Bài 2 trang 101 Vở thực hành Toán 8 tập 2 là một bài tập quan trọng trong chương trình học Toán 8. Bài tập này giúp học sinh rèn luyện kỹ năng áp dụng các định lý và tính chất đã học vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2 trang 101 Vở thực hành Toán 8 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Cho điểm M nằm trên cạnh BC sao cho BM = 4cm. Vẽ đường thẳng MN vuông góc với AC tại N và đường thẳng MP vuông góc với AB.
Đề bài
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Cho điểm M nằm trên cạnh BC sao cho BM = 4cm. Vẽ đường thẳng MN vuông góc với AC tại N và đường thẳng MP vuông góc với AB.
a) Chứng minh ΔBMP ∽ ΔMCN
b) Tính độ dài đoạn thẳng AM
Phương pháp giải - Xem chi tiết
a) Áp dụng trường hợp đồng dạng của hai tam giác vuông.
b) Từ các tỉ số đồng dạng tính ra AP, PM và áp dụng định lí Pythagore để tính AM
Lời giải chi tiết
(H.9.21) Xét $\Delta ABC$, ta có AB2 + AC2 = 62 + 82 = 102 = BC2.
Do đó, theo định lí Pythagore đảo, $\Delta ABC$ vuông tại A.
Từ đó suy ra MP // AC (vì MP, AC cùng vuông góc với AB); tương tự, MN // AB.
a) Hai tam giác BMP (vuông tại P) và MCN (vuông tại N) có $\widehat{BMP}=\widehat{MCN}$ (hai góc đồng vị). Do đó $\Delta BMP\backsim \Delta MCN$ (một cặp góc nhọn bằng nhau).
b) Hai tam giác vuông BMP (vuông tại P) và BCA (vuông tại A) có góc B chung. Do đó $\Delta BMP\backsim \Delta BCA$ (một cặp góc nhọn bằng nhau).
Suy ra $\frac{BP}{BA}=\frac{MP}{CA}=\frac{BM}{BC}=\frac{2}{5}$.
Do đó $BP=\frac{2BA}{5}=\frac{12}{5}(cm),MP=\frac{2CA}{5}=\frac{16}{5}(cm)$.
Vì vậy AP = AB – BP = $\frac{18}{5}$ cm.
Áp dụng định lí Pythagore cho tam giác vuông APM ta có:
$A{{M}^{2}}=A{{P}^{2}}+M{{P}^{2}}=\frac{580}{25}$, hay $AM=2\sqrt{\frac{29}{5}}cm$.
Bài 2 trang 101 Vở thực hành Toán 8 tập 2 thường liên quan đến việc áp dụng các định lý về hình thang cân, hình bình hành, hoặc các tính chất của đường trung bình trong tam giác. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 2. Tuy nhiên, dựa trên kinh nghiệm giải các bài tập tương tự, chúng ta có thể đưa ra một số bước giải chung:
Đề bài: Cho hình thang cân ABCD (AB // CD). Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng MN là đường trung bình của hình thang.
Lời giải:
Ngoài bài 2 trang 101, Vở thực hành Toán 8 tập 2 còn có nhiều bài tập tương tự. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập này, học sinh cần:
Để học tốt môn Toán 8, học sinh có thể tham khảo các tài liệu sau:
Để học Toán 8 hiệu quả, học sinh nên:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em học sinh sẽ tự tin hơn trong việc giải bài 2 trang 101 Vở thực hành Toán 8 tập 2 và các bài tập tương tự. Chúc các em học tốt!