Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 18 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Rút gọn biểu thức sau đây để thấy
Đề bài
Rút gọn biểu thức sau đây để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: \(\left( {x-5} \right)\left( {2x + 3} \right)-2x\left( {x-3} \right) + x + 7\).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc nhân đa thức để rút gọn biểu thức.
Lời giải chi tiết
\(\begin{array}{*{20}{l}}{\left( {x-5} \right)\left( {2x + 3} \right)-2x\left( {x-3} \right) + x + 7}\\{ = x.2x-2x.5 + 3.x-5.3 - 2x.x + 2x.3 + x + 7}\\{ = 2{x^2}\;-\;10x + 3x-15 - \;2{x^2}\; + 6x + x + 7}\\{ = \left( {2{x^2}\;-2{x^2}} \right) + (-10x + 3x + 6x + x) + \left( {-15 + 7} \right) = -8.}\end{array}\)
Vậy giá trị của \(\left( {x-5} \right)\left( {2x + 3} \right)-2x\left( {x-3} \right) + x + 7\) luôn bằng −8, không phụ thuộc vào x.
Bài 5 trang 18 Vở thực hành Toán 8 thuộc chương trình học Toán lớp 8, thường tập trung vào các kiến thức về hình học, cụ thể là các định lý và tính chất liên quan đến tứ giác. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong môn học này.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 5 trang 18 Vở thực hành Toán 8 một cách hiệu quả, các em cần:
Bài tập: Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB. Đường thẳng DE cắt AC tại I. Chứng minh rằng AI = 2IC.
Lời giải:
Các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán lớp 8:
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải bài 5 trang 18 Vở thực hành Toán 8 và các bài tập tương tự. Chúc các em học tập tốt!