Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 22 Vở thực hành Toán 8. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả nhất.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.
a) Tìm đơn thức C nếu \(5x{y^2}\;.C = 10{x^3}{y^3}\).
Đề bài
a) Tìm đơn thức C nếu \(5x{y^2}\;.C = 10{x^3}{y^3}\).
b) Với đơn thức C tìm được ở câu a, hãy tìm đơn thức K sao cho \(\left( {K + 5x{y^2}} \right).C = 6{x^4}y + 10{x^3}{y^3}\).
Phương pháp giải - Xem chi tiết
a) Sử dụng quy tắc chia đơn thức cho đơn thức.
b) Thay C vào biểu thức, sử dụng quy tắc chia đa thức cho đơn thức.
Lời giải chi tiết
a) Ta có \(5x{y^2}\;.C = 10{x^3}{y^3}\) nên \(C = 10{x^3}{y^3}\;:5x{y^2}\; = 2{x^2}y\).
b) Từ phép nhân đã cho, ta suy ra \(K.C{\rm{ = }}6{x^4}y + 10{x^3}{y^3} - 5x{y^2}.2{x^2}y = 6{x^4}y + 10{x^3}{y^3} - 10{x^3}{y^3} = 6{x^4}y\). Do đó
\(K = 6{x^4}y:C = 6{x^4}y:2{x^2}y = 3{x^2}.\)
Vậy ta có phép nhân \(\left( {3{x^2} + 5x{y^2}} \right).2{x^2}y = 6{x^4}y + 10{x^3}{y^3}\).
Bài 6 trang 22 Vở thực hành Toán 8 thuộc chương trình học Toán lớp 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý và tính chất của các hình này để giải quyết các bài toán liên quan đến tính độ dài đoạn thẳng, số đo góc, diện tích và chu vi.
Bài 6 thường bao gồm các dạng bài tập sau:
Bài tập: Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB. Gọi F là giao điểm của DE và AC. Chứng minh rằng AF = FC.
Lời giải:
Để củng cố kiến thức và kỹ năng giải bài tập về hình học, các em có thể luyện tập thêm các bài tập tương tự trong Vở thực hành Toán 8 và các tài liệu tham khảo khác. Ngoài ra, các em có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học Toán 8 để được hướng dẫn chi tiết hơn.
Bài 6 trang 22 Vở thực hành Toán 8 là một bài tập quan trọng giúp các em hiểu rõ hơn về các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông. Bằng cách nắm vững kiến thức lý thuyết, áp dụng các phương pháp giải bài tập hiệu quả và luyện tập thường xuyên, các em sẽ có thể giải quyết bài tập này một cách dễ dàng và tự tin.