Bài 4 trang 22 Vở thực hành Toán 8 tập 2 là một bài tập quan trọng trong chương trình học Toán 8. Bài tập này giúp học sinh rèn luyện kỹ năng áp dụng các kiến thức đã học vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4 trang 22 Vở thực hành Toán 8 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho biểu thức \(P = \frac{{{x^2} - 6{\rm{x}} + 9}}{{9 - {x^x}}} + \frac{{4{\rm{x}} + 8}}{{x + 3}}\)
Đề bài
Cho biểu thức \(P = \frac{{{x^2} - 6{\rm{x}} + 9}}{{9 - {x^x}}} + \frac{{4{\rm{x}} + 8}}{{x + 3}}\)
a) Rút gọn P.
b) Tính giá trị của P tại x = 7.
c) Chứng tỏ \(P = 3 + \frac{2}{{x + 3}}\). Từ đó tìm tất cả các giá trị nguyên của x sao cho biểu thức đã cho nhận giá trị nguyên.
Phương pháp giải - Xem chi tiết
a) Rút gọn phân thức bằng cách cộng hai phân thức đã cho với nhau.
b) Thay giá trị x = 7 vào phân thức đã rút gọn.
c) Ta tính: \(P - 3 - \frac{2}{{x + 3}} = 0 \Rightarrow P = 3 + \frac{2}{{x + 3}}\).
Lời giải chi tiết
a) \(P = \frac{{{{\left( {x - 3} \right)}^2}}}{{ - \left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{{4x + 8}}{{x + 3}} = \frac{{x - 3}}{{ - \left( {x + 3} \right)}} + \frac{{4x + 8}}{{x - 3}}\)
\( = \frac{{3 - x + 4{\rm{x}} + 8}}{{x + 3}} = \frac{{3{\rm{x}} + 11}}{{x + 3}}\)
b) \(P(7) = \frac{{3.7 + 11}}{{7 + 3}} = 3,2\)
c) \(P = \frac{{3{\rm{x}} + 11}}{{x + 3}} = \frac{{3(x + 3) + 2}}{{x + 3}} = 3 + \frac{2}{{x + 3}}\), do đó \(\frac{2}{{x + 3}} = P - 3\).
Nếu \(P \in \mathbb{Z}\) và \(x \in \mathbb{Z}\) thì \(\frac{2}{{x + 3}} \in \mathbb{Z}\) và x + 3 là ước số nguyên của 2.
Do đó, \(x + 3 \in \left\{ {1;2; - 1; - 2} \right\}\).
Ta lập được bảng sau:
x + 3 | 1 | 2 | -1 | -2 |
x | -2 | -1 | -4 | -5 |
P | 5 (tm) | 4 (tm) | 1 (tm) | 2 (tm) |
Do đó các giá trị nguyên x cần tìm là \(x \in \left\{ { - 2; - 1; - 4; - 5} \right\}\) (các giá trị này của x đều tỏa mãn điều kiện xác định của P).
Bài 4 trang 22 Vở thực hành Toán 8 tập 2 thuộc chương trình học về hình hộp chữ nhật và hình lập phương. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Để giải bài 4 trang 22 Vở thực hành Toán 8 tập 2, chúng ta cần phân tích kỹ đề bài và xác định đúng các yếu tố cần tìm. Dưới đây là lời giải chi tiết cho bài tập này:
Để tính diện tích xung quanh của hình hộp chữ nhật, ta sử dụng công thức: Diện tích xung quanh = 2 * (chiều dài + chiều rộng) * chiều cao. Trong bài toán, ta cần xác định đúng các giá trị của chiều dài, chiều rộng và chiều cao từ dữ liệu đề bài.
Để tính diện tích toàn phần của hình hộp chữ nhật, ta sử dụng công thức: Diện tích toàn phần = Diện tích xung quanh + 2 * Diện tích đáy. Diện tích đáy của hình hộp chữ nhật được tính bằng: Diện tích đáy = chiều dài * chiều rộng.
Để tính thể tích của hình hộp chữ nhật, ta sử dụng công thức: Thể tích = chiều dài * chiều rộng * chiều cao.
Giả sử một hình hộp chữ nhật có chiều dài 5cm, chiều rộng 3cm và chiều cao 4cm. Hãy tính:
Lời giải:
Để củng cố kiến thức về hình hộp chữ nhật và hình lập phương, các em học sinh có thể tự giải thêm các bài tập tương tự trong sách Vở thực hành Toán 8 tập 2. Ngoài ra, các em cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Bài 4 trang 22 Vở thực hành Toán 8 tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán hình học. Bằng cách nắm vững lý thuyết, áp dụng đúng công thức và luyện tập thường xuyên, các em học sinh có thể tự tin giải quyết các bài tập tương tự.