Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 42 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Rút gọn các biểu thức:
Đề bài
Rút gọn các biểu thức:
a) \(\left( {2x-5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\).
b) \(\left( {x + 2y} \right)\left( {{x^2}\;-2xy + 4{y^2}} \right) + \left( {2x-y} \right)\left( {4{x^2}\; + 2xy + {y^2}} \right)\).
Phương pháp giải - Xem chi tiết
a) Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức hiệu hai bình phương, bình phương của một tổng.
b) Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức tổng và hiệu hai lập phương.
Lời giải chi tiết
a) Ta có \(\left( {2x-5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\)
\(\begin{array}{*{20}{l}}{ = {{\left( {2x} \right)}^2}\;-{{\left( {5y} \right)}^{2\;}} + {{\left( {2x} \right)}^2}\; + 2.\left( {2x} \right).\left( {5y} \right) + {{\left( {5y} \right)}^2}}\\{ = 4{x^2}\;-25{y^2}\; + 4{x^2}\; + 20xy + 25{y^2}}\\{ = 8{x^2}\; + 20xy.}\end{array}\)
b) Ta có \(\left( {x + 2y} \right)\left( {{x^2}\;-2xy + 4{y^2}} \right) + \left( {2x-y} \right)\left( {4{x^2}\; + 2xy + {y^2}} \right)\)\(\begin{array}{l} = \left( {x + 2y} \right)\left[ {{x^2}\;-x.2y + {{\left( {2y} \right)}^2}} \right] + \left( {2x-y} \right)\left[ {{{\left( {2x} \right)}^2}\; + 2x.y + {y^2}} \right]\\ = {x^3}\; + {\left( {2y} \right)^3}\; + {\left( {2x} \right)^3}\;-{y^3}\\ = {x^3}\; + 8{y^3}\; + 8{x^3}\;-{y^3}\\ = 9{x^3}\; + 7{y^3}.\end{array}\)
Bài 6 trang 42 Vở thực hành Toán 8 thuộc chương trình học Toán lớp 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để giải quyết các bài toán thực tế.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 6 trang 42 Vở thực hành Toán 8 một cách hiệu quả, các em cần:
Bài 6: (Giả sử đề bài là: Cho hình thang cân ABCD (AB // CD), AD = BC. Gọi E là giao điểm của AC và BD. Chứng minh rằng: a) ΔADE = ΔBCE; b) DE = EC.)
a) Chứng minh ΔADE = ΔBCE:
Xét ΔADE và ΔBCE, ta có:
Vậy, ΔADE = ΔBCE (cạnh - góc - cạnh)
b) Chứng minh DE = EC:
Do ΔADE = ΔBCE (chứng minh trên) nên DE = EC (hai cạnh tương ứng).
Bài tập: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = BC = 6cm. Tính chiều cao của hình thang.
Giải:
Kẻ AH ⊥ CD (H ∈ CD). Khi đó, DH = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác vuông ADH, ta có: AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75.
Vậy, AH = √29.75 ≈ 5.45cm. Chiều cao của hình thang là 5.45cm.
Để củng cố kiến thức về bài 6 trang 42 Vở thực hành Toán 8, các em có thể tự giải thêm các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Hãy tìm kiếm các bài tập có mức độ khó tăng dần để rèn luyện kỹ năng giải toán.
Bài 6 trang 42 Vở thực hành Toán 8 là một bài tập quan trọng giúp các em hiểu rõ hơn về hình thang cân và các tính chất của nó. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin giải quyết bài tập một cách hiệu quả. Chúc các em học tốt!