Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 22 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Tìm hai số a và b sao cho
Đề bài
Tìm hai số a và b sao cho
\(\left( {5xy-4{y^2}} \right)\left( {3{x^2}\; + 4xy} \right) + a{x^2}{y^2}\;-bx{y^{3\;}} = 15xy\left( {{x^2}\;-{y^2}} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc nhân đơn thức với đa thức, nhân hai đa thức để thực hiện phép tính.
Lời giải chi tiết
Biến đổi vế phải: \(15xy\left( {{x^2}\;-{y^2}} \right) = 15{x^3}y-15x{y^3}\). (1)
Biến đổi vế trái: \(\left( {5xy-4{y^2}} \right)\left( {3{x^2}\; + 4xy} \right) + a{x^2}{y^2}\;-bx{y^3}\)
\( = 15{x^3}y + 20{x^2}{y^2}\;-12{x^2}{y^2}\;-16x{y^3}\; + a{x^2}{y^2}\;-bx{y^3}\)
\( = 15{x^3}y + \left( {8 + a} \right){x^2}{y^2}\; + \left( { - 16-b} \right)x{y^3}.\) (2)
So sánh hai đa thức (1) và (2) ta được:
\( \bullet 8 + a = 0\), suy ra \(a = - 8\).
\( \bullet - 16-b = - 15\), suy ra \(b = - 1\).
Bài 4 trang 22 Vở thực hành Toán 8 thuộc chương trình học Toán lớp 8, thường liên quan đến các kiến thức về hình học, cụ thể là các định lý và tính chất của hình thang cân. Việc nắm vững lý thuyết và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong môn học này.
Bài 4 thường yêu cầu học sinh chứng minh một tính chất nào đó của hình thang cân, hoặc tính toán các yếu tố liên quan đến hình thang cân như độ dài đường trung bình, chiều cao, góc,... Để giải bài tập này, học sinh cần:
Để giúp các em hiểu rõ hơn về cách giải bài 4 trang 22 Vở thực hành Toán 8, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài toán yêu cầu chứng minh rằng đường trung bình của hình thang cân song song với hai đáy.
Vẽ hình thang cân ABCD (AB // CD), với M là trung điểm của AD và N là trung điểm của BC.
Chúng ta cần chứng minh MN // AB // CD. Để chứng minh điều này, chúng ta có thể sử dụng các tính chất của hình thang cân và đường trung bình của tam giác.
Xét tam giác ADC, M là trung điểm của AD và N là trung điểm của DC. Do đó, MN là đường trung bình của tam giác ADC. Theo tính chất đường trung bình của tam giác, MN // AC.
Tương tự, xét tam giác BCD, N là trung điểm của BC và P là trung điểm của CD. Do đó, NP là đường trung bình của tam giác BCD. Theo tính chất đường trung bình của tam giác, NP // BD.
Vì ABCD là hình thang cân nên AC = BD. Do đó, MN = NP. Vậy MN // AB // CD.
Ngoài dạng bài chứng minh tính chất, bài 4 trang 22 Vở thực hành Toán 8 còn có thể xuất hiện các dạng bài tập sau:
Để giải các bài tập về hình thang cân một cách hiệu quả, các em có thể tham khảo một số mẹo sau:
Bài 4 trang 22 Vở thực hành Toán 8 là một bài tập quan trọng giúp các em củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.
Giaitoan.edu.vn sẽ tiếp tục đồng hành cùng các em trong các bài học tiếp theo. Chúc các em học tốt!