Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 39 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Phân tích các đa thức sau thành nhân tử:
Đề bài
Phân tích các đa thức sau thành nhân tử:
a) \({x^3}\; + {y^3}\; + x + y\);
b) \({x^3}\;-{y^3}\; + x-y\);
c) \({\left( {x-y} \right)^3}\; + {\left( {x + y} \right)^3}\);
d) \({x^3}\;-3{x^2}y + 3x{y^2}\;-{y^3}\; + {y^2}\;-{x^2}\).
Phương pháp giải - Xem chi tiết
a) Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử và sử dụng hằng đẳng thức hiệu hai lập phương.
b) Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử và sử dụng hằng đẳng thức hiệu hai lập phương.
c) Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức tổng hai lập phương.
d) Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức lập phương của một hiệu và hiệu hai bình phương.
Lời giải chi tiết
a) Ta có \({x^3}\; + {y^3}\; + x + y = \left( {{x^3}\; + {y^3}} \right) + \left( {x + y} \right)\)
\(\begin{array}{*{20}{l}}{ = \left( {x + y} \right)\left( {{x^2}\;-xy + {y^2}} \right) + \left( {x + y} \right)}\\{ = \left( {x + y} \right)\left( {{x^2}\;-xy + {y^2}\; + 1} \right).}\end{array}\)
b) Ta có \({x^3}\;-{y^3}\; + x-y = \left( {{x^3}\;-{y^3}} \right) + \left( {x-y} \right)\)
\(\begin{array}{*{20}{l}}{ = \left( {x-y} \right)\left( {{x^2}\; + xy + {y^2}} \right) + \left( {x-y} \right)}\\{ = \left( {x-y} \right)\left( {{x^2}\; + xy + {y^2}\; + 1} \right).}\end{array}\)
c) Ta có \({\left( {x-y} \right)^3}\; + {\left( {x + y} \right)^3}\; = \left( {x-y + x + y} \right).\left[ {{{\left( {x + y} \right)}^2}\;-\left( {x + y} \right)\left( {x - y} \right) + {{\left( {x - y} \right)}^2}} \right]\)
\(\begin{array}{*{20}{l}}{ = \;2x.\left[ {{x^2}\; + 2xy + {y^2}\;-\left( {{x^2}\;-{y^2}} \right) + {x^2}\; - 2xy + {y^2}} \right]}\\{ = \;2x.\left[ {\left( {{x^2}\;-{x^2}\; + {x^2}} \right)\; + \;\left( {2xy - 2xy} \right)\; + \;\left( {{y^2}\; + {y^2}\; + {y^2}} \right)} \right]}\\{ = 2x\left( {{x^2}\; + 3{y^2}} \right).}\end{array}\)
d) Ta có \({x^3}\;-3{x^2}y + 3x{y^2}\;-{y^3}\; + {y^2}\;-{x^2}\; = \left( {{x^3}\;-3{x^2}y + 3x{y^2}\;-{y^3}} \right)-\left( {{x^{2\;}}-{y^2}} \right)\)
\(\begin{array}{*{20}{l}}{ = {{\left( {x-y} \right)}^3}\;-\left( {x-y} \right)\left( {x + y} \right)}\\{ = \left( {x-y} \right).\left[ {{{\left( {x-y} \right)}^{2\;}}-\left( {x + y} \right)} \right]}\\{ = \left( {x-y} \right)\left( {{x^2}\;-2xy + {y^{2\;}}-x-y} \right).}\end{array}\)
Bài 2 trang 39 Vở thực hành Toán 8 thường thuộc chương trình học về các phép biến đổi đơn giản với đa thức. Mục tiêu chính của bài tập này là giúp học sinh rèn luyện kỹ năng thu gọn đa thức, tìm bậc của đa thức và thực hiện các phép toán cộng, trừ đa thức một cách chính xác.
Bài 2 thường bao gồm một số câu hỏi nhỏ yêu cầu học sinh:
Để giải bài 2 trang 39 Vở thực hành Toán 8 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Ví dụ: Thu gọn đa thức sau: A = 3x2 + 2x - 5x2 + 7x - 1
Giải:
A = (3x2 - 5x2) + (2x + 7x) - 1
A = -2x2 + 9x - 1
Vậy đa thức A sau khi thu gọn là -2x2 + 9x - 1. Bậc của đa thức A là 2.
Để củng cố kiến thức và kỹ năng giải bài tập về đa thức, các em có thể tự giải các bài tập tương tự sau:
Bài 2 trang 39 Vở thực hành Toán 8 là một bài tập quan trọng giúp học sinh nắm vững kiến thức cơ bản về đa thức. Bằng cách luyện tập thường xuyên và áp dụng các kiến thức đã học, các em sẽ tự tin hơn trong việc giải các bài tập tương tự và đạt kết quả tốt trong môn Toán.
Kiến thức | Mô tả |
---|---|
Đơn thức | Biểu thức đại số chỉ chứa một biến với số mũ nguyên không âm. |
Đa thức | Tổng của các đơn thức. |
Thu gọn đa thức | Đưa đa thức về dạng đơn giản nhất bằng cách cộng các đơn thức đồng dạng. |
Bậc của đa thức | Số mũ cao nhất của biến trong đa thức sau khi thu gọn. |