Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 23 Vở thực hành Toán 8. Bài viết này sẽ giúp các em hiểu rõ cách giải bài tập, nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp đáp án chính xác, phương pháp giải dễ hiểu và nhiều tài liệu học tập hữu ích khác.
Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất
Đề bài
Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất
a) bao nhiêu hạng tử bậc 2? Cho ví dụ.
b) bao nhiêu hạng tử bậc nhất? Cho ví dụ.
c) bao nhiêu hạng tử khác 0? Cho ví dụ.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hạng tử của đa thức, bậc của đa thức.
Lời giải chi tiết
Gọi M là một đa thức bậc hai thu gọn với hai biến x và y. Khi đó:
a) Các hạng tử bậc hai của M chỉ có thể đồng dạng với một trong ba đơn thức \(xy;{x^2}\) và \({y^2}\). Do đó M có nhiều nhất là ba hạng tử bậc hai.
Ví dụ, đa thức bậc hai \({x^2}\;-2{y^2}\; + 3xy + 4\); đa thức này có 3 hạng tử bậc hai là \({x^2}; - 2{y^2}\;\) và \(3xy\).
b) Các hạng tử bậc nhất của M chỉ có thể đồng dạng với một trong hai đơn thức x và y. Do đó M có nhiều nhất là hai hạng tử bậc nhất.
Ví dụ, đa thức bậc hai \(3x - 2y + 5\); đa thức này có 2 hạng tử bậc nhất là \(3x\) và \( - 2y\).
c) Các hạng tử khác 0 của M gồm các hạng tử bậc hai, bậc nhất và một hạng tử số (hạng tử tự do). Do đó M có \(3 + 2 + 1 = 6\) hạng tử khác 0.
Ví dụ: \({x^2}\; + 2{y^2}\;-3xy + 4x-5y + 6\); đa thức này có 3 hạng tử bậc hai, 2 hạng tử bậc nhất và 1 hạng tử số.
Bài 5 trang 23 Vở thực hành Toán 8 thường thuộc các dạng bài tập về phân tích đa thức thành nhân tử, sử dụng các phương pháp như đặt nhân tử chung, dùng hằng đẳng thức, nhóm đa thức, và phương pháp tách hạng tử. Việc nắm vững các phương pháp này là nền tảng quan trọng để giải quyết các bài toán đại số phức tạp hơn ở các lớp trên.
Để giải quyết bài 5 trang 23 Vở thực hành Toán 8 một cách hiệu quả, chúng ta cần phân tích kỹ đề bài, xác định đúng dạng bài tập và lựa chọn phương pháp giải phù hợp. Dưới đây là hướng dẫn chi tiết cho từng phần của bài tập:
Ví dụ: Phân tích đa thức 3x2 + 6x thành nhân tử.
Ví dụ: Phân tích đa thức x2 - 4 thành nhân tử.
Ví dụ: Phân tích đa thức ax + ay + bx + by thành nhân tử.
Ví dụ: Phân tích đa thức x2 + 5x + 6 thành nhân tử.
Để củng cố kiến thức và kỹ năng, các em có thể tự giải các bài tập tương tự trong Vở thực hành Toán 8 hoặc các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em tự tin hơn khi đối mặt với các bài toán khó.
Bài 5 trang 23 Vở thực hành Toán 8 là một bài tập quan trọng giúp các em rèn luyện kỹ năng phân tích đa thức thành nhân tử. Hy vọng với hướng dẫn chi tiết và các lưu ý trên, các em sẽ giải quyết bài tập một cách dễ dàng và hiệu quả. Chúc các em học tập tốt!