Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 123 vở thực hành Toán 8 tập 2

Giải bài 5 trang 123 vở thực hành Toán 8 tập 2

Giải bài 5 trang 123 Vở thực hành Toán 8 tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 123 Vở thực hành Toán 8 tập 2. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, mang đến những tài liệu học tập chất lượng và hữu ích.

Cho biểu thức: (P = left( {frac{{x + y}}{{1 - xy}} + frac{{x - y}}{{1 + xy}}} right):1 + frac{{{x^2} + {y^2} + 2{{rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}),

Đề bài

Cho biểu thức:

\(P = \left( {\frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}} \right):\left(1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\right)\), trong đó x và y là hai biến thỏa mãn điều kiện \({x^2}{y^2} - 1 \ne 0\)

a) Tính tổng \(A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}\)\(B = 1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\)

b) Từ kết quả câu a) hãy thu gọn P và giải thích tại sao giá trị của P không phụ thuộc vào giá trị của biến y.

c) Chứng minh đẳng thức: \(P = 1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 - {x^2}}}\)

d) Sử dụng câu c) hãy tìm các giá trị của x và y sao cho P = 1

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 123 vở thực hành Toán 8 tập 2 1

Rút gọn phân thức theo quy tắc rút gọn

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}} = \frac{{\left( {x + y} \right)\left( {1 + xy} \right) + \left( {x - y} \right)\left( {1 - xy} \right)}}{{1 - {x^2}{y^2}}}\\ = \frac{{x + {x^2}y + y + x{y^2} + x - {x^2}y - y + x{y^2}}}{{1 - {x^2}{y^2}}}\\ = \frac{{2{\rm{x}} + 2{\rm{x}}{y^2}}}{{1 - {x^2}{y^2}}} = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}\end{array}\)

\(\begin{array}{l}B = 1 + \frac{{{x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}}\\ = \frac{{1 - {x^2}{y^2} + {x^2} + {y^2} + 2{{\rm{x}}^2}{y^2}}}{{1 - {x^2}{y^2}}} = \frac{{1 + {x^2} + {y^2} + {x^2}{y^2}}}{{1 - {x^2}{y^2}}}\\ = \frac{{\left( {1 + {x^2}} \right) + {y^2}\left( {1 + {x^2}} \right)}}{{1 - {x^2}{y^2}}} = \frac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}\end{array}\)

b) Từ hai kết quả trên, ta có:

\(\begin{array}{l}P = A:B = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}:\frac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}\\ = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}.\frac{{1 - {x^2}{y^2}}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}} = \frac{{2{\rm{x}}}}{{1 + {x^2}}}\left( * \right)\end{array}\)

Trong biểu thức (*), ta thấy không xuất hiện biến y, chứng tỏ giá trị của biểu thức P nếu xác định thì nó không phụ thuộc vào biến y.

c) Ta thấy:

\(1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = \frac{{1 + {x^2} - \left( {1 - 2x + {x^2}} \right)}}{{1 + {x^2}}} = \frac{{1 + {x^2} - 1 + 2x - {x^2}}}{{1 + {x^2}}} = \frac{{2x}}{{1 + {x^2}}}\).

So sánh kết quả này với (*), ta suy ra P = \(1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}\)

d) Cách 1. Từ kết quả câu c, ta có: P = 1 khi \(\frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = 0\). Điều này xảy ra khi hai biến x và y xác định, tức là nếu x = 1 và x2y2 – 1 \( \ne \) 0. Vậy các giá trị của x và y để P = 1 là x = 1 và y2\( \ne \) 1 (y \( \ne \pm \)1).

Cách 2. Từ (*) ta có (với điều kiện x2y2 – 1 \( \ne \) 0): \(P = \frac{{2x}}{{1 + {x^2}}} = 1\), hay 2x = 1 + x2, tức là (x – 1)2 = 0 \( \Leftrightarrow \)x = 1.

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 5 trang 123 vở thực hành Toán 8 tập 2 đặc sắc thuộc chuyên mục bài tập sách giáo khoa toán 8 trên môn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 5 trang 123 Vở thực hành Toán 8 tập 2: Tổng quan

Bài 5 trang 123 Vở thực hành Toán 8 tập 2 thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức đã học về hình học, cụ thể là các định lý liên quan đến tứ giác. Bài tập này thường yêu cầu học sinh chứng minh các tính chất của tứ giác, tính độ dài đoạn thẳng, góc hoặc diện tích hình.

Nội dung bài tập

Bài 5 thường bao gồm một hoặc nhiều câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh giải quyết một vấn đề cụ thể liên quan đến tứ giác. Các dạng bài tập thường gặp bao gồm:

  • Chứng minh một tứ giác là hình gì (hình bình hành, hình chữ nhật, hình thoi, hình vuông).
  • Tính độ dài các cạnh, đường chéo của tứ giác.
  • Tính số đo các góc của tứ giác.
  • Tính diện tích tứ giác.

Phương pháp giải bài tập

Để giải bài 5 trang 123 Vở thực hành Toán 8 tập 2 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  1. Các định nghĩa về tứ giác: Hình bình hành, hình chữ nhật, hình thoi, hình vuông.
  2. Các tính chất của các loại tứ giác đặc biệt: Các cạnh đối song song, các góc đối bằng nhau, đường chéo cắt nhau tại trung điểm, đường chéo vuông góc với nhau, đường chéo bằng nhau.
  3. Các dấu hiệu nhận biết các loại tứ giác đặc biệt: Các cạnh đối song song, các góc đối bằng nhau, một cạnh bằng và song song với cạnh đối diện, đường chéo cắt nhau tại trung điểm.
  4. Các công thức tính diện tích tứ giác: Diện tích hình chữ nhật, hình thoi, hình vuông, diện tích tứ giác tổng quát.

Ví dụ minh họa

Bài toán: Cho tứ giác ABCD có AB = CD và AD = BC. Chứng minh tứ giác ABCD là hình bình hành.

Giải:

Xét hai tam giác ABD và CDB, ta có:

  • AB = CD (giả thiết)
  • AD = BC (giả thiết)
  • BD là cạnh chung

Do đó, tam giác ABD = tam giác CDB (c-c-c). Suy ra ∠ABD = ∠CDB và ∠ADB = ∠CBD.

Vì ∠ABD = ∠CDB nên AB // CD (hai góc so le trong bằng nhau).

Vì ∠ADB = ∠CBD nên AD // BC (hai góc so le trong bằng nhau).

Vậy, tứ giác ABCD là hình bình hành (dấu hiệu nhận biết hình bình hành).

Lưu ý khi giải bài tập

Khi giải bài tập về tứ giác, học sinh cần:

  • Vẽ hình chính xác và đầy đủ.
  • Phân tích kỹ đề bài để xác định đúng yêu cầu.
  • Vận dụng linh hoạt các kiến thức đã học.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong Vở thực hành Toán 8 tập 2 và các tài liệu tham khảo khác.

Kết luận

Bài 5 trang 123 Vở thực hành Toán 8 tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán hình học. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng trên đây, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Khái niệmĐịnh nghĩa
Hình bình hànhTứ giác có hai cặp cạnh đối song song.
Hình chữ nhậtHình bình hành có một góc vuông.
Hình thoiHình bình hành có bốn cạnh bằng nhau.
Hình vuôngHình bình hành có bốn cạnh bằng nhau và một góc vuông.

Tài liệu, đề thi và đáp án Toán 8