Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 58 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho hình chữ nhật ABCD. Gọi O là trung điểm của AC. Hạ OM vuông góc với BC tại M, ON vuông góc với BC tại N.
Đề bài
Cho hình chữ nhật ABCD. Gọi O là trung điểm của AC. Hạ OM vuông góc với BC tại M, ON vuông góc với BC tại N.
a) Chứng minh \(OA = \frac{1}{2}BD.\)
b) Chứng minh MN = OC.
c) Kẻ BK vuông góc với AC tại K, OM giao với BK tại H. Chứng minh CH vuông góc với OB.
Phương pháp giải - Xem chi tiết
a) Dựa vào tính chất của hình chữ nhật: Hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.
b) Chứng minh OMCN là hình chữ nhật suy ra MN = OC.
c) Chứng minh H là trực tâm tam giác OBC suy ra CH vuông góc với OB.
Lời giải chi tiết
(H.3.31). a) Vì ABCD là hình chữ nhật nên AC cắt BD tại O và OA = OB = OD.
⇒\(OA = OB = \frac{1}{2}BD.\)
b) Tứ giác OMCN có \(\hat M = \hat N = \hat C = 90^\circ \) nên OMCN là hình chữ nhật ⇒ MN = OC.
c) Trong tam giác BOC có OM, BK là đường cao cắt nhau tại H nên H là trực tâm ⇒ CH ⊥ OB.
Bài 5 trang 58 Vở thực hành Toán 8 thuộc chương trình học Toán lớp 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để giải quyết các bài toán thực tế.
Bài 5 trang 58 Vở thực hành Toán 8 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 5 trang 58 Vở thực hành Toán 8 một cách hiệu quả, các em cần thực hiện theo các bước sau:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao của hình thang.
Lời giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là đường cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:
AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75
Suy ra, AH = √29.75 ≈ 5.45cm.
Vậy, đường cao của hình thang ABCD là khoảng 5.45cm.
Khi giải các bài toán về hình thang cân, các em cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo thêm các bài tập sau:
Hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh đã có thể tự tin giải quyết bài 5 trang 58 Vở thực hành Toán 8 một cách hiệu quả. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!