Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 50 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho M là một điểm nằm trong tam giác đều ABC.
Đề bài
Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song với BC, CA, AB lần lượt cắt AB, BC, CA tại các điểm P, Q, R.
a) Chứng minh tứ giác APMR là hình thang cân.
b) Chứng minh rằng chu vi tam giác PQR bằng tổng độ dài MA + MB + MC.
c) Hỏi với vị trí nào của M thì tam giác PQR là tam giác đều.
Phương pháp giải - Xem chi tiết
a) Dựa vào dấu hiệu nhận biết hình thang cân để chứng minh.
b) Dựa vào tính chất của hình thang cân.
c) Dựa vào tính chất của tam giác đều để tìm vị trí của M.
Lời giải chi tiết
(H.3.17). a) Do MR // AP nên tứ giác APMR là hình thang.
Ta có \(\widehat A = 60^\circ \) (do ∆ABC đều).
Do MP // BC nên \(\widehat B = \widehat {APM} = 60^\circ .\) Từ đó suy ra \(\widehat A = \widehat {APM}\) nên APMR là hình thang cân.
b) Tương tự câu a, ta có các tứ giác BQMP và CRMQ là những hình thang cân.
Do APMR, BQMP và CRMQ là những hình thang cân, suy ra RP = AM, PQ = BM, QR = CM (hai đường chéo của hình thang cân).
Chu vi của tam giác PQR là
PQ + RP + QR = BM + AM + CM.
c) Tam giác PQR là tam giác đều có nghĩa là PQ = QR = RP, tức là MB = MC = MA.
Vậy M cách đều ba đỉnh A, B, C tức M là giao điểm của ba đường trung trực của tam giác ABC.
Bài 4 trang 50 Vở thực hành Toán 8 thuộc chương trình học Toán lớp 8, thường liên quan đến các kiến thức về hình học, cụ thể là các định lý và tính chất của hình thang cân. Việc nắm vững lý thuyết và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong môn học này.
Bài 4 thường yêu cầu học sinh chứng minh một tính chất nào đó của hình thang cân, hoặc tính toán các yếu tố liên quan đến hình thang cân như độ dài đường trung bình, chiều cao, góc,... Để giải bài tập này, học sinh cần:
Để giúp các em hiểu rõ hơn về cách giải bài 4 trang 50 Vở thực hành Toán 8, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài toán yêu cầu chứng minh rằng đường trung bình của hình thang cân song song với hai đáy và bằng nửa tổng hai đáy.
Vẽ hình thang cân ABCD (AB // CD), với M và N lần lượt là trung điểm của AD và BC. Nối MN.
Chúng ta cần chứng minh MN // AB // CD và MN = (AB + CD) / 2.
Xét tam giác ADC, M là trung điểm của AD và N là trung điểm của DC. Do đó, MN là đường trung bình của tam giác ADC. Theo tính chất đường trung bình của tam giác, ta có:
Tương tự, xét tam giác BCD, N là trung điểm của BC và M là trung điểm của AD. Do đó, MN là đường trung bình của tam giác BCD. Theo tính chất đường trung bình của tam giác, ta có:
Vì ABCD là hình thang cân nên AC = BD. Do đó, MN = AC / 2 = BD / 2. Vì AB // CD và MN // AC // BD nên MN // AB // CD. Vậy, MN song song với hai đáy và bằng nửa tổng hai đáy.
Ngoài dạng bài chứng minh tính chất, bài 4 trang 50 Vở thực hành Toán 8 còn có thể xuất hiện các dạng bài tập sau:
Bài 4 trang 50 Vở thực hành Toán 8 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.
Giaitoan.edu.vn sẽ tiếp tục đồng hành cùng các em trong các bài học tiếp theo. Chúc các em học tốt!