Bài 7 trang 10 Vở thực hành Toán 8 tập 2 là một bài tập quan trọng trong chương trình học Toán 8. Bài tập này giúp học sinh rèn luyện kỹ năng áp dụng các kiến thức đã học vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7 trang 10 Vở thực hành Toán 8 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Quy đồng mẫu thức các phân thức sau: a) \(\frac{1}{{x + 2}};\frac{{x + 1}}{{{x^2} - 4x + 4}}\) và \(\frac{5}{{2 - x}}\);
Đề bài
Quy đồng mẫu thức các phân thức sau:
a) \(\frac{1}{{x + 2}};\frac{{x + 1}}{{{x^2} - 4x + 4}}\) và \(\frac{5}{{2 - x}}\);
b) \(\frac{1}{{3x + 3y}};\frac{{2x}}{{{x^2} - {y^2}}}\) và \(\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2xy + {y^2}}}\).
Phương pháp giải - Xem chi tiết
Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung;
- Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó;
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết
a) Ta có: \({x^2} - 4x + 4 = {(x - 2)^2}\) nên ba phân thức có mẫu thức chung là \({\left( {2 - x} \right)^2}.(x + 2)\).
Các nhân tử phụ của \(x + 2;{x^2} - 4x + 4;2 - x\) lần lượt là \({(2 - x)^2}\); (x+2) và \(\left( {2 - x} \right)\left( {2 + x} \right)\).
Quy đồng mẫu thức ba phân thức đó, ta được:
\(\begin{array}{l}\frac{1}{{x + 2}} = \frac{{{{\left( {2 - x} \right)}^2}}}{{\left( {x + 2} \right){{(2 - x)}^2}}};\\\frac{{x + 1}}{{{x^2} - 4x + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{{(2 - x)}^2}\left( {x + 2} \right)}};\end{array}\)
và \(\frac{5}{{2 - x}} = \frac{{5(x + 2)(2 - x)}}{{{{(2 - x)}^2}(x + 2)}}\).
b) Ta có 3x + 3y = 3(x + y); \({x^2} - {y^2} = (x + y)(x - y)\) và \({x^2} - 2xy + {y^2} = {(x - y)^2}\).
\(MTC = 3(x + y){(x - y)^2}\).
Các nhân tử phụ của 3x + 3y; \({x^2} - {y^2}\); \({x^2} - 2xy + {y^2}\) lần lượt là \({(x - y)^2}\); \(3.(x - y)\); \(3(x + y)\).
Quy đồng mẫu ba phân thức đó, ta được:
\(\begin{array}{l}\frac{1}{{3x + 3y}} = \frac{{{{(x - y)}^2}}}{{3(x + y){{(x - y)}^2}}};\\\frac{{2x}}{{{x^2} - {y^2}}} = \frac{{6x(x - y)}}{{3(x + y){{(x - y)}^2}}}\end{array}\)
và \(\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2xy + {y^2}}} = \frac{{3({x^3} + {y^3})}}{{3(x + y){{(x - y)}^2}}}\).
Bài 7 trang 10 Vở thực hành Toán 8 tập 2 thuộc chương trình học về hình hộp chữ nhật và hình lập phương. Để giải quyết bài tập này, học sinh cần nắm vững các khái niệm cơ bản như:
Phương pháp giải bài tập thường bao gồm:
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 7 trang 10. Giả sử bài 7 yêu cầu tính thể tích của một hình hộp chữ nhật có chiều dài 5cm, chiều rộng 3cm và chiều cao 4cm. Lời giải sẽ như sau:
Bài giải:
Thể tích của hình hộp chữ nhật là:
V = a.b.c = 5cm . 3cm . 4cm = 60cm3
Vậy, thể tích của hình hộp chữ nhật là 60cm3.
Ngoài bài 7, Vở thực hành Toán 8 tập 2 còn nhiều bài tập tương tự về tính thể tích hình hộp chữ nhật và hình lập phương. Dưới đây là một số dạng bài tập thường gặp và cách giải:
Để nắm vững kiến thức về thể tích hình hộp chữ nhật và hình lập phương, học sinh nên luyện tập thêm các bài tập khác trong Vở thực hành Toán 8 tập 2 và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em hiểu sâu hơn về kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Hình | Công thức tính thể tích |
---|---|
Hình hộp chữ nhật | V = a.b.c |
Hình lập phương | V = a3 |
Trong đó: a, b, c là chiều dài, chiều rộng, chiều cao của hình hộp chữ nhật; a là cạnh của hình lập phương. |
Bài 7 trang 10 Vở thực hành Toán 8 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về thể tích hình hộp chữ nhật và hình lập phương. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn trong quá trình học tập và giải bài tập Toán 8.