Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 34 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Rút gọn biểu thức sau: \((x - 2y)({x^2} + 2xy + 4{y^2}) + (x + 2y)({x^2} - 2xy + 4{y^2})\)
Đề bài
Rút gọn biểu thức sau: \((x - 2y)({x^2} + 2xy + 4{y^2}) + (x + 2y)({x^2} - 2xy + 4{y^2})\)
Phương pháp giải - Xem chi tiết
- Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)
- Sử dụng hằng đẳng thức hiệu hai lập phương: \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Lời giải chi tiết
Ta có: \(\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right) + \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\)
\(\begin{array}{l} = \left( {x - 2y} \right)\left[ {{x^2} + x.\left( {2y} \right) + {{\left( {2y} \right)}^2}} \right] + \left( {x + 2y} \right)\left[ {{x^2} - x.\left( {2y} \right) + {{\left( {2y} \right)}^2}} \right]\\ = {x^3} - {\left( {2y} \right)^3} + {x^3} + {\left( {2y} \right)^3}\\ = {x^3} - 8{y^3} + {x^3} + 8{y^3} = 2{x^3}\end{array}\)
Bài 5 trang 34 Vở thực hành Toán 8 thuộc chương trình học Toán lớp 8, thường tập trung vào các kiến thức về hình học, cụ thể là các định lý và tính chất liên quan đến tứ giác. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong môn học này.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 5 trang 34 Vở thực hành Toán 8 một cách hiệu quả, các em cần:
Bài toán: Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB. Đường thẳng DE cắt AC tại I. Chứng minh rằng AI = 2IC.
Lời giải:
Để học tốt môn Toán lớp 8, các em có thể tham khảo các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh đã có thể tự tin giải quyết bài 5 trang 34 Vở thực hành Toán 8. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!