Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 36 Vở thực hành Toán 8. Bài viết này sẽ cung cấp đáp án và hướng dẫn giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép
Đề bài
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức
\(S\; = \;200.{\left( {1 + x} \right)^3}\) (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất là \(x = 5,5\% \).
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
Phương pháp giải - Xem chi tiết
a) Thay \(x = 5,5\% \) vào biểu thức \(S\; = \;200.{\left( {1 + x} \right)^3}\) để tính số tiền bác Tùng nhận được sau 3 năm.
b) Khai triển S bằng cách sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\) sau đó xác định bậc của đa thức.
Lời giải chi tiết
a) Ta có \(x = 5,5\% = 0,055\), do đó \(S = 200.{\left( {1 + 0,055} \right)^3}\)
\( = 200.1,{055^3}\; = 234,8\) (triệu đồng).
b) \(S = 200.{\left( {1 + x} \right)^3}\; = 200.\left( {1 + 3x + 3{x^2}\; + {x^3}} \right)\)
\( = 200 + 600x + 600{x^2}\; + 200{x^3}\).
Vậy S là đa thức bậc 3.
Bài 6 trang 36 Vở thực hành Toán 8 thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để giải quyết các bài toán thực tế.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 6 trang 36 Vở thực hành Toán 8 một cách hiệu quả, các em cần:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = BC = 6cm. Tính chiều cao của hình thang.
Lời giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là chiều cao của hình thang.
Ta có: DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm
Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:
AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75
Suy ra: AH = √29.75 ≈ 5.45cm
Vậy, chiều cao của hình thang ABCD là khoảng 5.45cm.
Để giải nhanh các bài tập về hình thang cân, các em có thể sử dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, các em nên luyện tập thêm các bài tập tương tự trong sách giáo khoa, sách bài tập và các đề thi thử. Ngoài ra, các em có thể tham khảo các bài giảng trực tuyến và các video hướng dẫn giải bài tập trên giaitoan.edu.vn.
Bài 6 trang 36 Vở thực hành Toán 8 là một bài tập quan trọng giúp các em hiểu rõ hơn về hình thang cân và các tính chất của nó. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải quyết các bài tập tương tự.