Chào mừng bạn đến với giaitoan.edu.vn! Chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho các câu hỏi trắc nghiệm trang 15 Vở thực hành Toán 8 tập 2, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và những lưu ý quan trọng để bạn có thể giải quyết các bài toán tương tự một cách hiệu quả.
Chọn phương án đúng trong mỗi câu sau:
Tính tổng \(\frac{{{x^2}}}{{x + 1}} + \frac{{ - 1}}{{x + 1}}\), ta được kết quả là
A. \(\frac{{x - 1}}{{x + 1}}\).
B. \(x - 1\).
C. \(x + 1\).
D. \(\frac{{{x^2} + x - 1}}{{x + 1}}\).
Phương pháp giải:
Thực hiện phép cộng phân thức cùng mẫu: cộng các tử thức với nhau và giữ nguyên mẫu thức.
Lời giải chi tiết:
Ta có:
\(\frac{{{x^2}}}{{x + 1}} + \frac{{ - 1}}{{x + 1}} = \frac{{{x^2} - 1}}{{x + 1}} = \frac{{(x - 1)(x + 1)}}{{x + 1}} = x - 1\)
=> Chọn đáp án B.
Tính tổng \(\frac{{x + 1}}{x} + \frac{x}{{x - 1}} + \frac{{x + 1}}{{ - x}}\), ta được kết quả là
A. \(\frac{{2x}}{{x - 1}}\).
B. \(\frac{{{x^2} - 1}}{{{x^2} - x}}\).
C. \(\frac{{2x + 2}}{{x - 1}}\).
D. \(\frac{x}{{x - 1}}\).
Phương pháp giải:
Thực hiện phép cộng phân thức không cùng mẫu: quy đồng mẫu thức rồi cộng các phân thức cùng mẫu nhận được.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\frac{{x + 1}}{x} + \frac{x}{{x - 1}} + \frac{{x + 1}}{{ - x}}\\ = \frac{{\left( {x + 1} \right)\left( {x - 1} \right) + {x^2} - \left( {x + 1} \right)\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}}\\ = \frac{{{x^2}}}{{x(x - 1)}} = \frac{x}{{x - 1}}.\end{array}\)
=> Chọn đáp án D.
Chọn phương án đúng trong mỗi câu sau:
Tính tổng \(\frac{{{x^2}}}{{x + 1}} + \frac{{ - 1}}{{x + 1}}\), ta được kết quả là
A. \(\frac{{x - 1}}{{x + 1}}\).
B. \(x - 1\).
C. \(x + 1\).
D. \(\frac{{{x^2} + x - 1}}{{x + 1}}\).
Phương pháp giải:
Thực hiện phép cộng phân thức cùng mẫu: cộng các tử thức với nhau và giữ nguyên mẫu thức.
Lời giải chi tiết:
Ta có:
\(\frac{{{x^2}}}{{x + 1}} + \frac{{ - 1}}{{x + 1}} = \frac{{{x^2} - 1}}{{x + 1}} = \frac{{(x - 1)(x + 1)}}{{x + 1}} = x - 1\)
=> Chọn đáp án B.
Tính tổng \(\frac{{x + 1}}{x} + \frac{x}{{x - 1}} + \frac{{x + 1}}{{ - x}}\), ta được kết quả là
A. \(\frac{{2x}}{{x - 1}}\).
B. \(\frac{{{x^2} - 1}}{{{x^2} - x}}\).
C. \(\frac{{2x + 2}}{{x - 1}}\).
D. \(\frac{x}{{x - 1}}\).
Phương pháp giải:
Thực hiện phép cộng phân thức không cùng mẫu: quy đồng mẫu thức rồi cộng các phân thức cùng mẫu nhận được.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\frac{{x + 1}}{x} + \frac{x}{{x - 1}} + \frac{{x + 1}}{{ - x}}\\ = \frac{{\left( {x + 1} \right)\left( {x - 1} \right) + {x^2} - \left( {x + 1} \right)\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}}\\ = \frac{{{x^2}}}{{x(x - 1)}} = \frac{x}{{x - 1}}.\end{array}\)
=> Chọn đáp án D.
Trang 15 Vở thực hành Toán 8 tập 2 thường chứa các bài tập trắc nghiệm liên quan đến các kiến thức đã học trong chương. Các dạng bài tập thường gặp bao gồm:
Để giải các câu hỏi trắc nghiệm trang 15 Vở thực hành Toán 8 tập 2 một cách hiệu quả, bạn cần:
Câu 1: Thu gọn đa thức sau: 3x2 + 2x - 5x2 + 7x - 1
Giải:
3x2 + 2x - 5x2 + 7x - 1 = (3x2 - 5x2) + (2x + 7x) - 1 = -2x2 + 9x - 1
Vậy, đa thức thu gọn là -2x2 + 9x - 1.
Để giải các bài tập về đa thức, bạn cần nắm vững các kiến thức về:
Để phân tích đa thức thành nhân tử, bạn có thể sử dụng các phương pháp sau:
Để thực hiện các phép toán với phân thức đại số, bạn cần:
Khi làm bài tập trắc nghiệm, bạn nên:
Hy vọng rằng, với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể tự tin giải quyết các câu hỏi trắc nghiệm trang 15 Vở thực hành Toán 8 tập 2. Chúc bạn học tập tốt và đạt kết quả cao!