Bài 1.15 trang 30 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Kết nối tri thức, tập trung vào việc giải quyết các bài toán liên quan đến vectơ. Bài tập này giúp học sinh củng cố kiến thức về các phép toán vectơ, ứng dụng của vectơ trong hình học và các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, cùng với các phương pháp giải khác nhau để giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Xét tính chẵn lẻ của các hàm số sau: a) (y = sin 2x + tan 2x);
Đề bài
Xét tính chẵn lẻ của các hàm số sau:
a) \(y = \sin 2x + \tan 2x\);
b) \(y = \cos x + {\sin ^2}x\);
c) \(y = \sin x\cos 2x\);
d) \(y = \sin x + \cos x\).
Phương pháp giải - Xem chi tiết
Cho hàm số y = f(x) liên tục và xác định trên khoảng (đoạn) K. Với mỗi \(x \in K\) thì \( - x \in K\).
- Nếu f(-x) = f(x) thì hàm số y = f(x) là hàm số chẵn trên tập xác định.
- Nếu f(-x) = -f(x) thì hàm số y = f(x) là hàm số lẻ trên tập xác định.
Lời giải chi tiết
a) Hàm số \(y = \sin 2x + \tan 2x\) có nghĩa khi \(tan 2x\) có nghĩa
\(\cos 2x \ne 0\;\; \Leftrightarrow 2x \ne \frac{\pi }{2}\;\;\;\; \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\)
Vây tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\).
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.
Ta có: \(f\left( { - x} \right) = \sin \left( { - 2x} \right) + \tan \left( { - 2x} \right) = - \sin 2x - \tan 2x = - \left( {\sin 2x + \tan 2x} \right) = - f\left( x \right),\;\forall x \in D\).
Vậy \(y = \sin 2x + \tan 2x\) là hàm số lẻ.
b) Tập xác định của hàm số là \(D = \mathbb{R}\).
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.
Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) + {\sin ^2}\left( { - x} \right) = \cos x + {\sin ^2}x = f\left( x \right),\;\forall x \in D\)
Vậy \(y = \cos x + {\sin ^2}x\) là hàm số chẵn.
c) Tập xác định của hàm số là \(D = \mathbb{R}\).
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.
Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left( { - 2x} \right) = - \sin x.\cos 2x = - f\left( x \right),\;\forall x \in D\)
Vậy \(y = \sin x\cos \;2x\) là hàm số lẻ.
d) Tập xác định của hàm số là \(D = \mathbb{R}\).
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.
Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) = - \sin x + \cos x \ne \pm f\left( x \right),\;\forall x \in D\)
Vậy \(y = \sin x + \cos x\) không là hàm số chẵn cũng không là hàm số lẻ.
Bài 1.15 trang 30 SGK Toán 11 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các vấn đề cụ thể. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 1.15 yêu cầu học sinh thực hiện các thao tác với vectơ, bao gồm:
Để giải bài 1.15 trang 30 SGK Toán 11 tập 1 - Kết nối tri thức, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Ví dụ minh họa:
Giả sử cho hai vectơ a = (x1, y1) và b = (x2, y2). Khi đó:
Để giải các bài toán cụ thể, chúng ta cần áp dụng các công thức và kiến thức trên một cách linh hoạt và sáng tạo.
Bài 1.15 trang 30 SGK Toán 11 tập 1 - Kết nối tri thức thường xuất hiện các dạng bài tập sau:
Để giải bài tập về vectơ hiệu quả, bạn có thể áp dụng các mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể luyện tập thêm các bài tập sau:
Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin giải các bài tập về vectơ.
Bài 1.15 trang 30 SGK Toán 11 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn giải trên đây, bạn sẽ hiểu rõ hơn về bài tập này và tự tin giải các bài tập tương tự.