Bài 8.1 trang 71 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Một hộp đựng 15 tấm thẻ cùng loại được đánh số từ 1 đến 15. Rút ngẫu nhiên một tấm thẻ và quan sát số ghi trên thẻ.
Đề bài
Một hộp đựng 15 tấm thẻ cùng loại được đánh số từ 1 đến 15. Rút ngẫu nhiên một tấm thẻ và quan sát số ghi trên thẻ. Gọi A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7”; B là biến cố “Số ghi trên tấm thẻ là số nguyên tố”.
a) Mô tả không gian mẫu.
b) Mỗi biến cố \(A \cup B\) và AB là tập con nào của không gian mẫu?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Cho A và B là hai biến cố. Biến cố: “A hoặc B xảy ra” được gọi là biến cố hợp của A và B, kí hiệu là \(A \cup B.\)
- Cho A và B là hai biến cố. Biến cố: “Cả A và B đều xảy ra” được gọi là biến cố giao của A và B, kí hiệu AB.
Lời giải chi tiết
a) Không gian mẫu là các tấm thẻ được đánh số nên nó gồm 15 phần tử, ký hiệu \(\Omega = \left\{ {1;2;3;...;15} \right\}\)
b) A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7” nên \(A = \left\{ {1;2;3;4;5;6} \right\}\)
B là biến cố “Số ghi trên tấm thẻ là số nguyên tố” nên \(B = \left\{ {2;3;5;7;11;13} \right\}\)
\(A \cup B = \left\{ {1;2;3;4;5;6;7;11;13} \right\}\)
\(AB = \left\{ {2;3;5} \right\}\)
Bài 8.1 trang 71 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, bao gồm đạo hàm của hàm số tại một điểm, đạo hàm của các hàm số cơ bản, và các quy tắc tính đạo hàm.
Bài tập 8.1 yêu cầu học sinh tính đạo hàm của các hàm số đã cho. Các hàm số này có thể là các hàm số đơn giản như đa thức, hàm lượng giác, hoặc các hàm số phức tạp hơn được xây dựng từ các hàm số cơ bản thông qua các phép toán cộng, trừ, nhân, chia, và hợp thành.
Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Giải:
f'(x) = d/dx (3x2 + 2x - 1)
f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)
f'(x) = 6x + 2 - 0
f'(x) = 6x + 2
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để hiểu rõ hơn về đạo hàm và các ứng dụng của nó, bạn có thể tham khảo các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức hữu ích về cách giải Bài 8.1 trang 71 SGK Toán 11 tập 2 - Kết nối tri thức. Chúc bạn học tập tốt!