Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 22, 23 sách giáo khoa Toán 11 tập 1 chương trình Kết nối tri thức.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong môn học Toán.
Hoàn thành bảng sau:
Hoàn thành bảng sau:
\(x\) | \(\sin x\) | \(\cos x\) | \(\tan x\) | \(\cot x\) |
\(\frac{\pi }{6}\) | ? | ? | ? | ? |
0 | ? | ? | ? | ? |
\( - \frac{\pi }{2}\) | ? | ? | ? | ? |
Phương pháp giải:
Áp dụng giá trị lượng giác của các góc có liên quan đặc biệt.
Lời giải chi tiết:
\(x\) | \(\sin x\) | \(\cos x\) | \(\tan x\) | \(\cot x\) |
\(\frac{\pi }{6}\) | \(\frac{1}{2}\) | \(\frac{{\sqrt 3 }}{2}\) | \(\frac{{\sqrt 3 }}{3}\) | \(\sqrt 3 \) |
0 | 0 | 1 | 0 | - |
\( - \frac{\pi }{2}\) | -1 | 0 | - | 0 |
Tìm tập xác định của hàm số \(y = \frac{1}{{\sin x}}\)
Phương pháp giải:
Hàm số xác định khi \(\sin x \ne 0\)
Lời giải chi tiết:
Biểu thức \(\frac{1}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).
Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)
Mục 1 của chương trình Toán 11 tập 1 Kết nối tri thức tập trung vào việc giới thiệu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng, mở đầu cho chương trình Giải tích. Việc hiểu rõ về giới hạn sẽ giúp học sinh tiếp cận các khái niệm phức tạp hơn như đạo hàm và tích phân một cách dễ dàng hơn.
Mục 1 bao gồm các nội dung chính sau:
Bài tập này yêu cầu học sinh xét tính tồn tại của giới hạn của hàm số tại một điểm cho trước. Để giải bài tập này, học sinh cần:
Bài tập này yêu cầu học sinh tính giới hạn của hàm số bằng cách sử dụng các tính chất của giới hạn. Để giải bài tập này, học sinh cần:
Bài tập này thường là một bài toán ứng dụng, yêu cầu học sinh sử dụng kiến thức về giới hạn để giải quyết một vấn đề thực tế. Để giải bài tập này, học sinh cần:
Để giải bài tập về giới hạn một cách hiệu quả, học sinh có thể tham khảo một số mẹo sau:
Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau để học tập và luyện tập về giới hạn:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập được cung cấp trong bài viết này, các em học sinh sẽ tự tin hơn khi đối mặt với các bài toán về giới hạn trong chương trình Toán 11 tập 1 Kết nối tri thức. Chúc các em học tập tốt!