Bài 8.21 trang 79 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Bên cạnh đó, chúng tôi còn cung cấp các bài tập tương tự để học sinh luyện tập và củng cố kiến thức.
Xác suất để chọn được học sinh thích bóng chuyền và không thích bóng rổ là
Đề bài
Một lớp có 40 học sinh, trong đó có 23 học sinh thích bóng chuyền, 18 học sinh thích bóng rổ, 26 học sinh thích bóng chuyền hoặc bóng rổ hoặc cả hai. Chọn ngẫu nhiên một học sinh trong lớp.
Xác suất để chọn được học sinh thích bóng chuyền và không thích bóng rổ là
A. \(\frac{7}{{40}}.\)
B. \(\frac{9}{{40}}.\)
C. \(\frac{1}{{5}}.\)
D. \(\frac{{11}}{{40}}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Tính xác suất \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)
Lời giải chi tiết
Số học sinh thích cả bóng chuyền và bóng rổ là: 23 + 18 – 26 = 15 (học sinh)
Số học sinh thích bóng chuyền và không thích bóng rổ là 23 – 15 = 8 (học sinh)
Vậy xác suất để chọn được học sinh thích bóng chuyền và không thích bóng rổ là \(\frac{8}{{40}} = \frac{1}{5}\)
Đáp án C
Bài 8.21 trang 79 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải. Thông thường, đề bài sẽ yêu cầu tính đạo hàm của một hàm số tại một điểm cụ thể, hoặc tìm giá trị của biến số để hàm số đạt cực trị.
Giả sử đề bài yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x + 1 tại điểm x = 1.
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh có thể luyện tập thêm các bài tập tương tự sau:
Bài 8.21 trang 79 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và công thức về đạo hàm, cùng với việc luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.