Bài 6.29 trang 25 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hai số thực dương a, b với (a ne 1). Khẳng định nào sau đây là đúng?
Đề bài
Cho hai số thực dương a, b với \(a \ne 1\). Khẳng định nào sau đây là đúng?
A. \({\log _a}\left( {{a^3}{b^2}} \right) = 3 + {\log _a}b\).
B. \({\log _a}\left( {{a^3}{b^2}} \right) = 3 + 2{\log _a}b\).
C. \({\log _a}\left( {{a^3}{b^2}} \right) = \frac{3}{2} + {\log _a}b\).
D. \({\log _a}\left( {{a^3}{b^2}} \right) = \frac{1}{3} + \frac{1}{2}{\log _a}b\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng công thức lôgarit
Lời giải chi tiết
Đáp án B
Bài 6.29 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Nội dung bài tập:
Bài 6.29 thường yêu cầu học sinh tìm đạo hàm của một hàm số, sau đó sử dụng đạo hàm để giải quyết một bài toán cụ thể. Bài toán có thể liên quan đến việc tìm điểm cực trị của hàm số, khảo sát sự biến thiên của hàm số, hoặc giải các bài toán tối ưu hóa.
Lời giải chi tiết:
Để giải bài 6.29, ta thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tìm giá trị lớn nhất của hàm số f(x) = -x2 + 4x + 1 trên đoạn [0; 3].
Ta thực hiện các bước sau:
Lưu ý:
Khi giải bài tập về đạo hàm, học sinh cần chú ý các điểm sau:
Bài tập tương tự:
Để củng cố kiến thức về đạo hàm, học sinh có thể làm thêm các bài tập tương tự trong SGK Toán 11 tập 2 - Kết nối tri thức, hoặc tìm kiếm trên các trang web học toán online uy tín.
Kết luận:
Bài 6.29 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng đạo hàm để giải quyết các bài toán thực tế. Bằng cách nắm vững kiến thức cơ bản và thực hành thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.