Logo Header
  1. Môn Toán
  2. Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 8.24 trang 80 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Bên cạnh đó, chúng tôi còn cung cấp nhiều bài tập tương tự để học sinh luyện tập và củng cố kiến thức.

Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:

Đề bài

Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:

A: “Ở lần gieo thứ nhất, số chấm xuất hiện trên con xúc xắc là 1”;

B: “Ở lần gieo thứ hai, số chấm xuất hiện trên con xúc xắc là 2”

C: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 8”

D: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 7”.

Chứng tỏ rằng các cặp biến cố A và C; B và C, C và D không độc lập.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức 1

Với hai biến cố A và B, nếu \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) thì A và B không độc lập.

Lời giải chi tiết

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)

A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)

B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)

C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)

D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)

Do đó

\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)

Mặt khác

AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)

BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)

CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)

Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)

Vậy các cặp biến cố A và C; B và C, C và D không độc lập.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức: Giải chi tiết và hướng dẫn

Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải.

Lời giải chi tiết Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức

(Nội dung lời giải chi tiết bài toán sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm bắt được phương pháp giải bài toán.)

Ví dụ minh họa và bài tập tương tự

Để giúp học sinh hiểu rõ hơn về cách giải bài tập, chúng ta sẽ xem xét một số ví dụ minh họa. Các ví dụ này sẽ giúp học sinh áp dụng kiến thức đã học vào các bài toán tương tự.

  • Ví dụ 1:(Bài tập ví dụ và lời giải chi tiết)
  • Ví dụ 2:(Bài tập ví dụ và lời giải chi tiết)

Lưu ý quan trọng khi giải Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức

Khi giải bài tập này, học sinh cần lưu ý một số điểm sau:

  • Kiểm tra điều kiện xác định của hàm số: Đảm bảo rằng hàm số xác định tại các điểm cần tính đạo hàm.
  • Sử dụng đúng công thức đạo hàm: Áp dụng đúng các công thức đạo hàm đã học để tính đạo hàm của hàm số.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc: Đạo hàm của hàm vị trí theo thời gian cho ta vận tốc, và đạo hàm của vận tốc theo thời gian cho ta gia tốc.
  • Tìm cực trị của hàm số: Đạo hàm giúp ta tìm các điểm cực trị của hàm số, từ đó xác định giá trị lớn nhất và nhỏ nhất của hàm số.
  • Khảo sát hàm số: Đạo hàm giúp ta khảo sát hàm số, xác định khoảng đồng biến, nghịch biến, và điểm uốn của hàm số.

Tổng kết và hướng dẫn tự học

Bài 8.24 trang 80 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Để học tốt môn Toán 11, học sinh cần thường xuyên luyện tập và làm thêm các bài tập tương tự. giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, học sinh sẽ tự tin hơn khi giải các bài tập về đạo hàm.

Học sinh nên tham khảo thêm các tài liệu học tập khác, như sách giáo khoa, sách bài tập, và các trang web học toán online, để mở rộng kiến thức và nâng cao kỹ năng giải bài tập.

Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 11