Bài 3.6 trang 67 SGK Toán 11 tập 1 thuộc chương 1: Hàm số lượng giác và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác, đặc biệt là hàm cosin, để giải các bài toán liên quan đến tìm tập xác định, tập giá trị, và tính chất của hàm số.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Điểm (0 - 9) (10 - 19) (20 - 29) (30 - 39) (40 - 49) Số thí sinh (1) (2) (4) (6) (15) Điểm (50 - 59) (60 - 69) (70 - 79) (80 - 89) (90 - 99) Số thí sinh (12) (10) (6) (3) (1)
Đề bài
Điểm thi môn Toán (thang điểm 100, điểm được làm tròn đến 1) của 60 thí sinh được cho trong bảng sau:
a) Hiệu chỉnh để thu được mẫu số liệu ghép nhóm dạng Bảng 3.2.
b) Tìm các tứ phân vị và giải thích ý nghĩa của chúng.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Để tính tứ phân vị thứ nhất\({Q_1}\)của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_1}\), giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right).\;\)Khi đó,
\({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}}.\left( {{a_{p + 1}} - {a_p}} \right)\).
Trong đó, n là cỡ mẫu, \({m_p}\) là tần số nhóm p, với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Để tính tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_3}\). Giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right)\). Khi đó,
\({Q_3} = {a_p} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}}.\left( {{a_{p + 1}} - {a_p}} \right)\).
Trong đó, n là cỡ mẫu, \({m_p}\) là tần số nhóm p, với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Lời giải chi tiết
a)
b) Cỡ mẫu \(n = 60\)
Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_{15}} + {x_{16}}}}{2}\). Do \({x_{15}},\;{x_{16}}\) đều thuộc nhóm \(\left[ {40;50} \right)\) nên nhóm náy chứa \({Q_1}\). Do đó,
\(p = 5;\;\;{a_5} = 40;\;\;{m_5} = 15;\;\;{m_1} + {m_2} + {m_3} + {m_4} = 1 + 2 + 4 + 6 = 13;\;{a_6} - {a_5} = 10\)
Ta có \({Q_1} = 40 + \frac{{\frac{{60}}{4} - 13}}{{15}} \times 10 = 41,33\)
Ý nghĩa: Có 25% số giá trị nhỏ hơn 41,33
Tứ phân vị thứ hai, \({M_e}\) là \(\frac{{{x_{30}} + {x_{31}}}}{2}\). Do \({x_{30}};\;{x_{31}}\) đều thuộc nhóm \(\left[ {50;60} \right)\) nên nhóm này chứa \({M_e}\). Do đó,
\(p = 6;\;\;{a_6} = 50;\;\;{m_6} = 12;\;\;{m_1} + {m_2} + {m_3} + {m_4} + {m_5} = 1 + 2 + 4 + 6 + 15 = 13;\;{a_7} - {a_6} = 10\)
Ta có: \({Q_2} = 50 + \frac{{\frac{{60}}{2} - 28}}{{12}} \times 10 = 51,66\)
Ý nghĩa: Có 50% số giá trị nhỏ hơn 51,66
Tứ phân vị thứ ba \({Q_3}\) là \(\frac{{{x_{45}} + {x_{46}}}}{2}\). Do \({x_{45}},\;{x_{46}}\) đều thuộc nhóm \(\left[ {60;70} \right)\) nên nhóm náy chứa \({Q_3}\). Do đó,
\(p = 7;\;\;{a_7} = 60;\;\;{m_7} = 10;\;\;{m_1} + {m_2} + {m_3} + {m_4} + {m_5} + {m_6} = 1 + 2 + 4 + 6 + 15 + 12 = 40; {a_8} - {a_7} = 10\).
Ta có: \({Q_3} = 60 + \frac{{\frac{{60 \times 3}}{4} - 40}}{{10}} \times 10 = 65\)
Ý nghĩa: Có 75% số giá trị nhỏ hơn 65.
Bài 3.6 trang 67 SGK Toán 11 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này tập trung vào việc củng cố kiến thức về hàm số lượng giác, đặc biệt là hàm cosin và các tính chất của nó. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như tập xác định, tập giá trị, tính tuần hoàn, tính chẵn lẻ của hàm số cosin.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu. Thông thường, bài tập 3.6 trang 67 sẽ yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:
Phương pháp giải bài tập thường bao gồm:
(Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài tập 3.6, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa. Ví dụ:)
Câu a: Tìm tập xác định của hàm số y = cos(2x + π/3).
Giải: Hàm số y = cos(2x + π/3) có tập xác định là R (tập hợp tất cả các số thực) vì hàm cosin xác định với mọi giá trị của x.
Câu b: Tìm tập giá trị của hàm số y = 2cos(x) - 1.
Giải: Vì -1 ≤ cos(x) ≤ 1, suy ra -2 ≤ 2cos(x) ≤ 2. Do đó, -3 ≤ 2cos(x) - 1 ≤ 1. Vậy tập giá trị của hàm số là [-3, 1].
Ngoài bài tập 3.6, học sinh có thể gặp các bài tập tương tự liên quan đến hàm số lượng giác. Để giải các bài tập này, học sinh cần:
Ví dụ 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 3sin(x) + 2.
Giải: Vì -1 ≤ sin(x) ≤ 1, suy ra -3 ≤ 3sin(x) ≤ 3. Do đó, -1 ≤ 3sin(x) + 2 ≤ 5. Vậy giá trị lớn nhất của hàm số là 5 và giá trị nhỏ nhất là -1.
Khi giải bài tập hàm số lượng giác, học sinh cần lưu ý:
Bài 3.6 trang 67 SGK Toán 11 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Bằng cách nắm vững các khái niệm cơ bản, phương pháp giải và luyện tập thường xuyên, học sinh có thể giải bài tập này một cách hiệu quả và đạt kết quả tốt trong môn Toán.
Hàm số | Tập xác định | Tập giá trị |
---|---|---|
y = cos(x) | R | [-1, 1] |
y = sin(x) | R | [-1, 1] |