Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11 tập 2 - Kết nối tri thức. Mục 2 trang 83 là một phần quan trọng trong chương trình học, đòi hỏi học sinh nắm vững kiến thức và kỹ năng giải quyết vấn đề.
Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ bản chất của bài toán và áp dụng vào các bài tập tương tự.
Tính đạo hàm của hàm số (y = - {x^2} + 2x + 1) tại điểm ({x_0} = - 1.)
Đề bài
Tính đạo hàm của hàm số \(y = - {x^2} + 2x + 1\) tại điểm \({x_0} = - 1\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết
\(f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to - 1} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x - \left( { - 1} \right)}}\)
\( = \mathop {\lim }\limits_{x \to {\rm{\;}} - 1} \frac{{\left( { - {x^2} + 2x + 1} \right) - \left( { - {{( - 1)}^2} + 2.( - 1) + 1} \right)}}{{x + 1}}\)
\( = \mathop {\lim }\limits_{x \to {\rm{\;}} - 1} \frac{{\left( { - {x^2} + 2x + 1} \right) + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to {\rm{\;}} - 1} \frac{{ - {x^2} + 2x + 3}}{{x + 1}}\)
\( = \mathop {\lim }\limits_{x \to {\rm{\;}} - 1} \frac{{\left( {x + 1} \right)\left( {3 - x} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to {\rm{\;}} - 1} \left( {3 - x} \right) = 3 - \left( { - 1} \right) = 4\).
Vậy \(f'\left( { - 1} \right) = 4\).
Mục 2 trang 83 SGK Toán 11 tập 2 - Kết nối tri thức thường tập trung vào các bài toán liên quan đến đạo hàm của hàm số. Cụ thể, các bài tập thường yêu cầu học sinh tính đạo hàm của các hàm số đơn giản, áp dụng quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Để giải các bài tập mục 2 trang 83 SGK Toán 11 tập 2 - Kết nối tri thức một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài tập: Tính đạo hàm của hàm số f(x) = x2 + 3x - 2.
Lời giải:
Áp dụng quy tắc tính đạo hàm của tổng và hiệu, ta có:
f'(x) = (x2)' + (3x)' - (2)'
f'(x) = 2x + 3 - 0
f'(x) = 2x + 3
Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, bạn có thể tham gia các diễn đàn, nhóm học tập trực tuyến để trao đổi kinh nghiệm và học hỏi từ những người khác.
Hàm số f(x) | Đạo hàm f'(x) |
---|---|
C (hằng số) | 0 |
xn | nxn-1 |
sin x | cos x |
cos x | -sin x |
ex | ex |
ln x | 1/x |
Hy vọng với những kiến thức và phương pháp giải bài tập được trình bày trên đây, bạn sẽ tự tin hơn khi giải các bài tập mục 2 trang 83 SGK Toán 11 tập 2 - Kết nối tri thức. Chúc bạn học tập tốt!