Bài 7.30 trang 63 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Bên cạnh đó, chúng tôi còn cung cấp các bài tập tương tự để học sinh luyện tập và củng cố kiến thức.
Cho khối chóp đều S.ABCD, đáy có cạnh 6 cm. Tính thể tích của khối chóp đó trong các trường hợp sau.
Đề bài
Cho khối chóp đều S.ABCD, đáy có cạnh 6 cm. Tính thể tích của khối chóp đó trong các trường hợp sau.
a) Cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)
b) Mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Thế tích khối chóp \(V = \frac{1}{3}h.S\)
- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.
- Góc giữa hai mặt phẳng là góc giữa 2 đường thẳng trong hai mặt phẳng vuông góc với giao tuyến tại cùng một điểm.
Lời giải chi tiết
a)
Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)
\( \Rightarrow \) O là hình chiếu của S trên (ABCD)
C là hình chiếu của C trên (ABCD)
\( \Rightarrow \) OC là hình chiếu của SC trên (ABCD)
\( \Rightarrow \) (SC, (ABCD)) = (SC, OC) \( = \widehat {SCO}\)
Mà cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)
\( \Rightarrow \widehat {SCO} = {60^0}\)
Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{6^2} + {6^2}} = 6\sqrt 2 \left( {cm} \right)\)
\( \Rightarrow OC = \frac{{AC}}{2} = \frac{{6\sqrt 2 }}{2} = 3\sqrt 2 \left( {cm} \right)\)
Xét tam giác SOC vuông tại O có
\(\tan \widehat {SCO} = \frac{{SO}}{{OC}} \Rightarrow SO = 3\sqrt 2 .\tan {60^0} = 3\sqrt 6 \left( {cm} \right)\)
\({S_{ABCD}} = {6^2} = 36\left( {c{m^2}} \right)\)
Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.3\sqrt 6 .36 = 36\sqrt 6 \left( {c{m^3}} \right)\)
b)
Trong (ABCD) kẻ \(OE \bot CD\)
\(\begin{array}{l}SO \bot CD\left( {SO \bot \left( {ABCD} \right)} \right)\\ \Rightarrow CD \bot \left( {SOE} \right),SE \subset \left( {SOE} \right) \Rightarrow CD \bot SE,OE \bot CD,\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\ \Rightarrow \left( {\left( {SCD} \right),\left( {ABCD} \right)} \right) = \left( {SE,OE} \right) = \widehat {SEO}\end{array}\)
Mà mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)
\( \Rightarrow \widehat {SEO} = {45^0}\)
Ta có \(\left. \begin{array}{l}OE \bot CD\\AD \bot CD\end{array} \right\} \Rightarrow OE//AD\) mà O là trung điểm AC nên OE là đường trung bình tam giác ACD.
\( \Rightarrow OE = \frac{{AD}}{2} = \frac{6}{2} = 3\left( {cm} \right)\)
Xét tam giác SOE vuông tại O có
\(\tan \widehat {SEO} = \frac{{SO}}{{OE}} \Rightarrow SO = 3.\tan {45^0} = 3\left( {cm} \right)\)
Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.3.36 = 36\left( {c{m^3}} \right)\)
Bài 7.30 trang 63 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải. Thông thường, đề bài sẽ yêu cầu tính đạo hàm của một hàm số tại một điểm cụ thể, hoặc tìm giá trị của biến số để hàm số đạt cực trị.
Giả sử đề bài yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x + 1 tại điểm x = 1.
Giải:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Ngoài SGK Toán 11 tập 2 - Kết nối tri thức, học sinh có thể tham khảo thêm các tài liệu sau để học tập và luyện tập:
Kết luận: Bài 7.30 trang 63 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và công thức, luyện tập thường xuyên, và sử dụng các tài liệu tham khảo hỗ trợ, học sinh có thể giải bài tập này một cách hiệu quả và đạt kết quả tốt trong môn Toán.