Bài 9.23 trang 97 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Bên cạnh đó, chúng tôi còn cung cấp các bài tập tương tự để học sinh luyện tập và củng cố kiến thức.
Chuyển động của một vật có phương trình (s(t) = sin left( {0,8pi t + frac{pi }{3}} right))
Đề bài
Chuyển động của một vật có phương trình \(s(t) = \sin \left( {0,8\pi t + \frac{\pi }{3}} \right)\), ở đó s tính bằng centimét và thời gian t tính bằng giây. Tại các thời điểm vận tốc bằng 0 , giá trị tuyệt đối của gia tốc của vật gần với giá trị nào sau đây nhất?
A. \(4,5\;{\rm{cm}}/{{\rm{s}}^2}\).
B. \(5,5\;{\rm{cm}}/{{\rm{s}}^2}\).
C. \(6,3\;{\rm{cm}}/{{\rm{s}}^2}\).
D. \(7,1\;{\rm{cm}}/{{\rm{s}}^2}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng lý thuyết \(v = s';a = s''\)
Lời giải chi tiết
Ta có
\(\begin{array}{l}v\left( t \right) = s'\left( t \right) = 0,8\pi \cos \left( {0,8\pi t + \frac{\pi }{3}} \right);\\a\left( t \right) = s''\left( t \right) = - 0,8\pi .0,8\pi \sin \left( {0,8\pi t + \frac{\pi }{3}} \right) = - 0,64{\pi ^2}\sin \left( {0,8\pi t + \frac{\pi }{3}} \right)\end{array}\)
Vì
\(\begin{array}{l}v\left( t \right) = 0 \Leftrightarrow 0,8\pi \cos \left( {0,8\pi t + \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow 0,8\pi t + \frac{\pi }{3} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\\ \Leftrightarrow 0,8\pi t = \frac{\pi }{6} + k\pi \Leftrightarrow t = \frac{5}{{24}} + \frac{{5k}}{4}\end{array}\)
Thời điểm vận tốc bằng 0 giá trị tuyệt đối của gia tốc của vật là
\(\begin{array}{l}\left| {a\left( {\frac{5}{{24}} + \frac{{5k}}{4}} \right)} \right| = \left| { - 0,64{\pi ^2}\sin \left( {0,8\pi \left( {\frac{5}{{24}} + \frac{{5k}}{4}} \right) + \frac{\pi }{3}} \right)} \right|\\ = 0,64{\pi ^2}\left| {\sin \left( {\frac{\pi }{2} + k\pi } \right)} \right| = 0,64{\pi ^2} \approx 6,32\end{array}\)
Đáp án C
Bài 9.23 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh áp dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng.
Bài tập yêu cầu tính tốc độ thay đổi của sản lượng lúa mì theo thời gian, dựa trên một hàm số mô tả sản lượng lúa mì theo lượng phân bón sử dụng. Để giải bài tập này, học sinh cần hiểu rõ khái niệm đạo hàm và cách tính đạo hàm của một hàm số.
Để giải bài tập này, chúng ta sẽ thực hiện các bước sau:
Giả sử hàm số mô tả sản lượng lúa mì (Q) theo lượng phân bón (F) là:
Q(F) = 100F - 0.5F2
Đạo hàm của Q(F) theo F là:
Q'(F) = 100 - F
Để tính tốc độ thay đổi của sản lượng lúa mì khi sử dụng 50 kg phân bón, ta thay F = 50 vào đạo hàm:
Q'(50) = 100 - 50 = 50
Vậy, tốc độ thay đổi của sản lượng lúa mì khi sử dụng 50 kg phân bón là 50 đơn vị sản lượng trên mỗi kg phân bón.
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Bài 9.23 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong thực tế. Bằng cách nắm vững kiến thức và kỹ năng giải bài tập, học sinh có thể tự tin giải quyết các bài toán tương tự và áp dụng đạo hàm vào các lĩnh vực khác nhau.
giaitoan.edu.vn hy vọng rằng lời giải chi tiết và hướng dẫn này sẽ giúp bạn hiểu rõ hơn về bài tập này và học tập hiệu quả hơn.