Logo Header
  1. Môn Toán
  2. Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 7.40 trang 65 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Bên cạnh đó, chúng tôi còn cung cấp các bài tập tương tự để học sinh luyện tập và củng cố kiến thức.

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại (B,BC = ) a

Đề bài

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(B,BC = \) a và \(\widehat {CAB} = {30^0}\). Biết \(SA \bot (ABC)\) và \(SA = a\sqrt 2 \).

a) Chứng minh rằng \((SBC) \bot (SAB)\).

b) Tính theo a khoảng cách từ điểm \(A\) đến đường thẳng SC và khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức 1

- Hai mặt phẳng được gọi là vuông góc nếu một đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.

- Khoảng cách từ một điểm M đến một đường thẳng a là khoảng cách giữa M và hình chiếu H của M trên a.

- Khoảng cách từ một điểm M đến một mặt phẳng (P) là khoảng cách giữa M và hình chiếu H của M trên (P).

Lời giải chi tiết

Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức 2

a) \(SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right),AB \bot BC \Rightarrow BC \bot \left( {SAB} \right),BC \subset \left( {SBC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)

b) +) Trong (SAC) kẻ \(AD \bot SC \Rightarrow d\left( {A,SC} \right) = AD\)

Xét tam giác ABC vuông tại B có

\(\sin \widehat {CAB} = \frac{{BC}}{{AC}} \Rightarrow AC = \frac{a}{{\sin {{30}^0}}} = 2a\)

Xét tam giác SAC vuông tại A có

\(\frac{1}{{A{D^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow AD = \frac{{2a\sqrt 3 }}{3}\)

Do đó \(d\left( {A,SC} \right) = \frac{{2a\sqrt 3 }}{3}\)

+) \(\left( {SAB} \right) \bot \left( {SBC} \right),\left( {SAB} \right) \cap \left( {SBC} \right) = SB\)

Trong (SAB) kẻ \(AE \bot SB\)

\( \Rightarrow AE \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AE\)

Xét tam giác ABC vuông tại B có

\(\tan \widehat {CAB} = \frac{{BC}}{{AB}} \Rightarrow AB = \frac{a}{{\tan {{30}^0}}} = a\sqrt 3 \)

Xét tam giác SAB vuông tại A có

\(\frac{1}{{A{E^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} = \frac{5}{{6{a^2}}} \Rightarrow AE = \frac{{a\sqrt {30} }}{5}\)

Vậy \(d\left( {A,\left( {SBC} \right)} \right) = \frac{{a\sqrt {30} }}{5}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng toán math. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức: Giải chi tiết và hướng dẫn

Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh áp dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của một đại lượng.

Nội dung bài tập

Bài tập yêu cầu tìm đạo hàm của hàm số và sử dụng đạo hàm để giải quyết các bài toán thực tế. Cụ thể, bài tập có thể yêu cầu:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Giải các bài toán tối ưu hóa.

Lời giải chi tiết

Để giải bài 7.40 trang 65 SGK Toán 11 tập 2, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần tìm đạo hàm.
  2. Bước 2: Sử dụng các quy tắc đạo hàm để tính đạo hàm của hàm số.
  3. Bước 3: Giải các phương trình đạo hàm để tìm các điểm cực trị hoặc các điểm đặc biệt khác của hàm số.
  4. Bước 4: Sử dụng đạo hàm để giải quyết các bài toán thực tế được đưa ra trong bài tập.

Ví dụ, xét hàm số f(x) = x2 + 2x + 1. Để tìm đạo hàm của hàm số này, chúng ta sử dụng quy tắc đạo hàm của hàm đa thức:

f'(x) = 2x + 2

Để tìm các điểm cực trị của hàm số, chúng ta giải phương trình f'(x) = 0:

2x + 2 = 0

x = -1

Vậy, hàm số có một điểm cực trị tại x = -1. Để xác định xem điểm này là điểm cực đại hay cực tiểu, chúng ta có thể sử dụng tiêu chuẩn đạo hàm cấp hai.

Các dạng bài tập tương tự

Ngoài bài 7.40 trang 65, còn rất nhiều bài tập tương tự trong SGK Toán 11 tập 2 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến:

  • Vận tốc và gia tốc.
  • Tối ưu hóa các bài toán thực tế.
  • Nghiên cứu sự biến thiên của hàm số.

Mẹo giải bài tập

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các quy tắc đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Bài 7.40 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ tự tin hơn khi giải bài tập này và các bài tập tương tự.

Lưu ý: Bài giải trên chỉ mang tính chất tham khảo. Học sinh nên tự mình giải bài tập để hiểu rõ hơn về kiến thức và kỹ năng cần thiết.

Tài liệu, đề thi và đáp án Toán 11