Giaitoan.edu.vn xin giới thiệu lời giải chi tiết mục 2 trang 63, 64 sách giáo khoa Toán 11 tập 1 chương trình Kết nối tri thức. Bài viết này cung cấp đáp án đầy đủ, chính xác, cùng với phương pháp giải rõ ràng, giúp học sinh dễ dàng nắm vững kiến thức và hoàn thành bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, cập nhật nhanh chóng và dễ tiếp cận, hỗ trợ tối đa cho quá trình học tập của bạn.
Cho mẫu số liệu ghép nhóm về chiều cao của 21 cây na giống Chiều cao (cm) (left[ {0;5} right)) (left[ {5;10} right)) (left[ {10;15} right)) (left[ {15;20} right)) Số cây (3) (8) (7) (3) Gọi ({X_1},;{X_2},; ldots ,;{X_{21}}) là chiều cao của các cây giống, đã được sắp xếp theo thứ tự tăng dần. Khi đó, ({X_1},;;...,{X_3}) thuộc (left[ {0;5} right),;{X_4},; ldots ,{X_{11}}) thuộc (left[ {5;10} right), ldots ) Hỏi trung vị thuộc nhóm nào?
Video hướng dẫn giải
Cho mẫu số liệu ghép nhóm về chiều cao của 21 cây na giống
Gọi \({X_1},\;{X_2},\; \ldots ,\;{X_{21}}\) là chiều cao của các cây giống, đã được sắp xếp theo thứ tự tăng dần. Khi đó, \({X_1},\;\;...,{X_3}\) thuộc \(\left[ {0;5} \right),\;{X_4},\; \ldots ,{X_{11}}\) thuộc \(\left[ {5;10} \right), \ldots \) Hỏi trung vị thuộc nhóm nào?
Phương pháp giải:
Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu thành hai phần, mỗi phần chứ 50% giá trị.
Lời giải chi tiết:
Cỡ mẫu \(n = 3 + 8 + 7 + 3 = 21\).
Suy ra trung vị là \({x_{11}}\) thuộc nhóm [5; 10).
Video hướng dẫn giải
Ghi lại tốc độ bóng trong 200 lần giao bóng của một vận động viên môn quần vợt cho kết quả như bảng bên.
Tốc độ v (km/h) | Số lần |
\(150 \le v < 155\) | \(18\) |
\(155 \le v < 160\) | \(28\) |
\(160 \le v < 165\) | \(35\) |
\(165 \le v < 170\) | \(43\) |
\(170 \le v < 175\) | \(41\) |
\(175 \le v < 180\) | \(35\) |
Tính trung vị của mẫu số liệu ghép nhóm này.
Phương pháp giải:
Để tính trung vị của mẫu số liệu ghép nhóm, ta làm như sau:
Bước 1: Xác định nhóm chưa trung vị. Giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right)\).
Bước 2: Trung vị là \({M_e} = {a_p} + \frac{{\frac{n}{2} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}}.\;\left( {{a_{p - 1}} - {a_p}} \right),\).
Trong đó n là cỡ mẫu, \({m_p}\)là tần số nhóm p. Với \(p = 1\), ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Lời giải chi tiết:
Cỡ mẫu là \(n = 18 + 28 + 35 + 43 + 43 + 41 + 35 = 200\).
Gọi \({x_1},{x_2}, \ldots ,{x_{200}}\) là tốc độ giao bóng của 200 lần và giả sử dãy này được sắp xếp theo thứ tự tăng dần. Khi đó trung vị là \(\frac{{{x_{100}} + {x_{101}}}}{2}\).
Do hai giá trị \({x_{100}},\;{x_{101}}\)thuộc nhóm [165;170) nên nhóm này chứa trung vị.
Suy ra , \(p = 4;{a_4} = 165;{m_4} = 43;\;{m_1} + {m_2} + {m_3} = 18 + 28 + 35 = 81;{a_5} - {a_4} = 5\).
Ta có: \({M_e} = 165 + \frac{{\frac{{200}}{2} - 81}}{{43}}.5 = 167.21\).
Mục 2 của chương trình Toán 11 tập 1 Kết nối tri thức tập trung vào các kiến thức về hàm số bậc hai. Đây là một phần quan trọng, nền tảng cho các kiến thức nâng cao hơn trong chương trình học. Việc nắm vững các khái niệm, tính chất và phương pháp giải bài tập liên quan đến hàm số bậc hai là điều cần thiết để đạt kết quả tốt trong môn Toán.
Mục 2 bao gồm các nội dung chính sau:
Dưới đây là lời giải chi tiết các bài tập trang 63 SGK Toán 11 tập 1 Kết nối tri thức:
Giải: a = 2, b = -5, c = 1.
Giải:
Giải: Hàm số có dạng y = ax2 + bx + c với a = -1 < 0, nên hàm số đạt giá trị lớn nhất tại đỉnh của parabol. x0 = -b/2a = 3. y0 = -(3)2 + 6(3) - 5 = 4. Vậy giá trị lớn nhất của hàm số là 4.
Dưới đây là lời giải chi tiết các bài tập trang 64 SGK Toán 11 tập 1 Kết nối tri thức:
Giải:
x | -∞ | -1 | +∞ |
---|---|---|---|
y' | - | 0 | + |
y | - | -2 | + |
Giải: Hàm số xác định khi 2x - 1 ≥ 0 ⇔ x ≥ 1/2. Vậy tập xác định của hàm số là [1/2, +∞).
Để học tốt Mục 2, bạn nên:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên, bạn đã hiểu rõ hơn về Mục 2 trang 63, 64 SGK Toán 11 tập 1 Kết nối tri thức. Chúc bạn học tập tốt!