Chào mừng các em học sinh đến với bài giải chi tiết mục 3 trang 54, 55 SGK Toán 11 tập 1 chương trình Kết nối tri thức. Bài viết này cung cấp lời giải đầy đủ, dễ hiểu cho từng bài tập, giúp các em nắm vững kiến thức và tự tin làm bài tập về nhà.
Giaitoan.edu.vn là địa chỉ học toán online uy tín, cung cấp giải pháp học tập toàn diện cho học sinh THPT.
Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1} = a) và công bội (q ne 1) Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})
Video hướng dẫn giải
Cho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = a\) và công bội \(q \ne 1\)
Để tính tổng của n số hạng đầu\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Thực hiện lần lượt các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng trên theo \({u_1}\) và q để được biểu thức tính tổng \({S_n}\) chỉ chứa \({u_1}\) và q.
b) Từ kết quả phần a, nhân cả hai vế với q để được biểu thức tính tích \(q.{S_n}\) chỉ chứa \({u_1}\) và \(q\).
c) Trừ từng vế hai đẳng thức nhận được ở cả a và b và giản ước các số hạng đồng dạng để tính \(\left( {1 - q} \right){S_n}\) theo \({u_1}\)và \(q\). Từ đó suy ra công thức tính \({S_n}\).
Phương pháp giải:
Để biểu diễn mỗi số hạng trong tổng \({S_n}\), ta dựa vào công thức tính số hạng tổng quát: \({u_n} = {u_1}.{q^{n - 1}}\).
Sau đó, ta cộng các số hạng trong dãy số ta được tổng các số hạng \({S_n}\).
Lời giải chi tiết:
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_1}.{q^2}\)
…
\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)
\({u_n} = {u_1}.{q^{n - 1}}\)
\({S_n} = {u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)
b) \(q{S_n} = q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n}\)
c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n})\).
\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)
Video hướng dẫn giải
Nếu cấp số nhân có công bội q = 1 thì tổng n số hạng đầu \(S_n\) của nó bằng bao nhiêu?
Phương pháp giải:
Để biểu diễn mỗi số hạng trong tổng \({S_n}\), ta dựa vào công thức tính số hạng tổng quát: \({u_n} = {u_1}.{q^{n - 1}}\).
Sau đó, ta cộng các số hạng trong dãy số ta được tổng các số hạng \({S_n}\).
Lời giải chi tiết:
Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là \(u_1, u_1, ..., u_1,...\) Khi đó
\({S_n} = u_1 + u_1 + ... + u_1 = n . u_1\) (tổng của n số hạng u_1).
Video hướng dẫn giải
Một nhà máy tuyển thêm công nhân vào làm việc trong thời hạn ba năm và đưa ra hai phương án lựa chọn về lương như sau:
- Phương án 1: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 500 nghìn đồng.
- Phương án 2: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 5%.
Với phương án nào thì tổng lương nhận được sau ba năm làm việc của người công nhân sẽ lớn hơn?
Phương pháp giải:
Dựa vào đề bài xác định đâu là cấp số cộng, đâu là cấp số nhân.
Từ đó suy ra công thức tổng quát, thay giá trị n để tính được tổng lương và so sánh.
Lời giải chi tiết:
Theo phương án 1, tiền lương mỗi quý tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công sai \(d = 0,5 \times 3 = 1,5\)
Công thức tổng quát \({u_n} = 15 + 1,5\left( {n - 1} \right)\)
Sau 3 năm làm việc \(\left( {n = 12} \right)\), lương của người nông dân là:
\(\frac{{12}}{2}\left[ {2 \times 15 + \left( {12 - 1} \right) \times 1,5} \right] = 279\) (triệu đồng)
Theo phương án 2, tiền lương mỗi quý sẽ tạo thành cấp số nhân với
\({u_1} = 5 \times 3 = 15\), công bội \(q = 1,05\)
Công thức tổng quát \({u_n} = 15 \times 1,{05^{n - 1}}\)
Sau 3 năm làm việc \(\left( {n = 12} \right),\) lương của người nông dân là:
\(\frac{{15\left( {1 - 1,{{05}^{12}}} \right)}}{{1 - 1,05}} = 238,757\) (triệu đồng)
Vậy thì theo phương án 1 thì tổng lương nhận được của người nông dân cao hơn.
Mục 3 trong SGK Toán 11 tập 1 Kết nối tri thức tập trung vào việc nghiên cứu về hàm số bậc hai. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán ở các lớp trên. Việc nắm vững các khái niệm, tính chất và phương pháp giải bài tập liên quan đến hàm số bậc hai là điều cần thiết để đạt kết quả tốt trong môn Toán.
Mục 3 bao gồm các nội dung chính sau:
Bài tập này yêu cầu học sinh xác định tập xác định của các hàm số bậc hai khác nhau. Để giải bài tập này, cần lưu ý rằng tập xác định của hàm số bậc hai là tập R (tập hợp tất cả các số thực) trừ khi mẫu số bằng 0.
Bài tập này yêu cầu học sinh xác định các hệ số a, b, c của hàm số bậc hai. Để giải bài tập này, cần viết hàm số về dạng y = ax2 + bx + c và so sánh với các hệ số tương ứng.
Bài tập này yêu cầu học sinh tìm đỉnh và trục đối xứng của parabol. Để giải bài tập này, cần sử dụng công thức tính tọa độ đỉnh I(x0, y0) và phương trình trục đối xứng x = x0.
Bài tập này yêu cầu học sinh vẽ đồ thị hàm số bậc hai. Để vẽ đồ thị hàm số, cần xác định đỉnh, trục đối xứng, các điểm đặc biệt và một vài điểm khác trên đồ thị.
Hàm số bậc hai có nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng bài giải chi tiết mục 3 trang 54, 55 SGK Toán 11 tập 1 Kết nối tri thức này sẽ giúp các em học sinh hiểu rõ hơn về hàm số bậc hai và tự tin làm bài tập. Chúc các em học tập tốt!