Logo Header
  1. Môn Toán
  2. Bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.21 trang 97 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Bên cạnh đó, chúng tôi còn cung cấp các bài tập tương tự để học sinh luyện tập và củng cố kiến thức.

Cho hàm số (f(x) = sqrt {4 + 3u(x)} ) với (u(1) = 7,u'(1) = 10). Khi đó (f'(1)) bằng

Đề bài

Cho hàm số \(f(x) = \sqrt {4 + 3u(x)} \) với \(u(1) = 7,u'(1) = 10\). Khi đó \(f'(1)\) bằng

A. 1.

B. 6 .

C. 3 .

D. -3 .

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức 1

Sử dụng công thức \({\left( {\sqrt u } \right)^,} = \frac{{u'}}{{2\sqrt u }}\)

Lời giải chi tiết

Ta có \(f'(x) = \frac{{3u'\left( x \right)}}{{2\sqrt {4 + 3u(x)} }}\)

Nên \(f'(1) = \frac{{3u'\left( 1 \right)}}{{2\sqrt {4 + 3u(1)} }} = \frac{{3.10}}{{2\sqrt {4 + 3.7} }} = 3\)

Đáp án C

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức: Giải chi tiết và hướng dẫn

Bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải. Thông thường, bài toán sẽ yêu cầu tính đạo hàm của một hàm số, tìm cực trị của hàm số, hoặc giải một phương trình liên quan đến đạo hàm.

Phương pháp giải bài tập

Để giải bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức, học sinh có thể áp dụng các phương pháp sau:

  • Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số cho trước.
  • Tìm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  • Khảo sát hàm số: Sử dụng đạo hàm để xác định khoảng đồng biến, nghịch biến, và cực trị của hàm số.
  • Giải phương trình: Sử dụng đạo hàm để giải các phương trình liên quan đến hàm số.

Lời giải chi tiết bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức

(Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, các công thức sử dụng, và các kết quả tính toán. Lời giải sẽ được trình bày một cách rõ ràng, dễ hiểu, và có kèm theo các hình vẽ minh họa nếu cần thiết.)

Ví dụ minh họa và bài tập tương tự

Để giúp học sinh hiểu rõ hơn về cách giải bài tập, chúng ta sẽ xem xét một ví dụ minh họa. Sau đó, chúng ta sẽ cung cấp một số bài tập tương tự để học sinh luyện tập và củng cố kiến thức.

Ví dụ: (Trình bày một ví dụ minh họa về cách giải bài tập tương tự)

Bài tập tương tự:

  1. Bài tập 1: ...
  2. Bài tập 2: ...
  3. Bài tập 3: ...

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, học sinh cần lưu ý những điều sau:

  • Nắm vững các khái niệm và công thức về đạo hàm.
  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Lựa chọn phương pháp giải phù hợp.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Vật lý: Tính vận tốc, gia tốc, và các đại lượng liên quan đến chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên, và lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa thiết kế và hiệu suất của các hệ thống.
  • Thống kê: Phân tích dữ liệu và dự đoán xu hướng.

Kết luận

Bài 9.21 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và công thức về đạo hàm, học sinh có thể giải quyết bài tập này một cách hiệu quả và áp dụng kiến thức này vào các lĩnh vực khác.

Tài liệu, đề thi và đáp án Toán 11