Bài 5.11 trang 118 SGK Toán 11 tập 1 thuộc chương 1: Hàm số lượng giác và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác, đặc biệt là các phép biến đổi lượng giác để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Cho hàm số (gleft( x right) = frac{{{x^2} - 5x + 6}}{{left| {x - 2} right|}}) Tìm (mathop {{rm{lim}}}limits_{x to {2^ + }} gleft( x right)) và (mathop {{rm{lim}}}limits_{x to {2^ - }} gleft( x right))
Đề bài
Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\)
Tìm \(\mathop {{\rm{lim}}}\limits_{x \to {2^ + }} g\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to {2^ - }} g\left( x \right)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng giới hạn trái, phải để tính.
\(\left| a \right| = \left\{ \begin{array}{l} - a,a < 0\\a,a \ge 0\end{array} \right.\)
Lời giải chi tiết
Khi \(x \to {2^ - } \Rightarrow \left| {x - 2} \right| = 2 - x\)
Ta có:
\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 5x + 6}}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{ - \left( {x - 2} \right)}}= \mathop {\lim }\limits_{x \to {2^ - }} \left[ { - \left( {x - 3} \right)} \right] = 3 - 2 = 1\)
Khi \(x \to {2^ + } \Rightarrow \left| {x - 2} \right| = x - 2\)
Ta có
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 5x + 6}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 3} \right) = 2 - 3 = - 1\)
Bài 5.11 yêu cầu chúng ta giải phương trình lượng giác. Để giải quyết bài toán này, chúng ta cần nắm vững các công thức lượng giác cơ bản và các phương pháp giải phương trình lượng giác thường gặp.
Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Xác định hàm số lượng giác cần xét và các điều kiện ràng buộc (nếu có). Trong bài này, chúng ta cần giải phương trình lượng giác với một số biến đổi cần thiết.
Để giải Bài 5.11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức, ta thực hiện các bước sau:
Giả sử phương trình cần giải là sin(x) = 0.5. Ta có thể sử dụng đường tròn lượng giác để tìm các giá trị của x thỏa mãn phương trình này. Trên đường tròn lượng giác, sin(x) = 0.5 tại hai điểm. Từ đó, ta có thể tìm được các nghiệm của phương trình.
Để hiểu sâu hơn về hàm số lượng giác và phương trình lượng giác, bạn có thể tham khảo thêm các tài liệu sau:
Để củng cố kiến thức, bạn có thể giải thêm các bài tập tương tự trong SGK Toán 11 tập 1 - Kết nối tri thức hoặc trên các trang web học toán online khác.
Bài 5.11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình lượng giác. Bằng cách nắm vững các công thức lượng giác và phương pháp giải toán, học sinh có thể tự tin giải quyết các bài toán tương tự.
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết này sẽ giúp bạn hiểu rõ hơn về bài toán và đạt kết quả tốt trong học tập.
Tiếp tục luyện tập và khám phá thêm nhiều bài toán thú vị khác trên Giaitoan.edu.vn!