Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 của giaitoan.edu.vn. Trong bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 62, 63 sách giáo khoa Toán 11 tập 1 chương trình Kết nối tri thức.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong môn học Toán.
Khảo sát thời gian tự học của các học sinh trong lớp theo mẫu bên. a) Hãy lập bảng thống kê cho mẫu số liệu ghép nhóm thu được b) Có thể tính chính xác thời gian tự học trung bình của các học sinh trong lớp không? c) Có cách nào tính gần đúng thời gian tự học trung bình của các học sinh trong lớp dựa trên mẫu số liệu ghép nhóm này không?
Video hướng dẫn giải
Khảo sát thời gian tự học của các học sinh trong lớp theo mẫu bên.
a) Hãy lập bảng thống kê cho mẫu số liệu ghép nhóm thu được
b) Có thể tính chính xác thời gian tự học trung bình của các học sinh trong lớp không?
c) Có cách nào tính gần đúng thời gian tự học trung bình của các học sinh trong lớp dựa trên mẫu số liệu ghép nhóm này không?
Phương pháp giải:
Để chuyển mẫu số liệu không ghép nhóm sang mẫu số liệu ghép nhóm, ta làm như sau:
Bước 1: Chia miền giá trị của mẫu số liệu thành một số nhóm theo tiêu chí cho trước.
Bước 2: Đếm số giá trị của mẫu số liệu thuộc mỗi nhóm (tần số) và lập bảng thống kê cho mẫu số liệu ghép.
Dựa trên mẫu số liệu ghép nhóm, có thể ước lượng các số đặc trưng đo xu thế trung tâm cho mẫu số liệu gốc.
Lời giải chi tiết:
a)
b) Không thể tính chính xác, chúng ta chỉ có thể tinh số gần đúng thời gian tự học trung bình của các học sinh trong lớp
c) Giá trị đại diện của nhóm bằng trung bình giá trị đầu mút phải và trái của nhóm đó
Nhóm \( \ge 4.5\) là nhóm mở nên ta dựa theo nhóm gần đó nhất là nhóm [3;4.5) để lấy giá trị đại diện
Số trung binh của mẫu số liệu: : \(\bar x = \frac{{0.75 \times 8 + 2.25 \times 23 + 2.75 \times 6 + 5.25 \times 3}}{{40}} = 2.25\).
Video hướng dẫn giải
Tìm hiểu thời gian xem ti vi trong tuần trước (đơn vị: giờ) của một số học sinh thu được kết quả sau:
Tính thời gian xem ti vi trung bình trong tuần trước của các bạn học sinh này.
Phương pháp giải:
Sử dụng công thức số trung bình của mẫu số liệu ghép nhóm kí hiệu là\(\;\bar x\).
\(\bar x = \frac{{{m_1}{x_1} + \ldots + {m_k}{x_k}}}{n}\)
Trong đó \(n = {m_1} + \ldots + {m_k}\) là cỡ mẫu và là giá trị đại diện của nhóm \(\left[ {{a_i},{a_{i + 1}}} \right)\).
Lời giải chi tiết:
Thời gian xem ti vi trung bình trong tuần trước của các bạn học sinh này là:\({\rm{\;}}\bar x = \frac{{8 \times 2.5 + 16 \times 7.5 + 4 \times 12.5 + 2 \times 17.5 + 2 \times 22.5}}{{8 + 16 + 4 + 2 + 2}} = 8.4375\) (giờ).
Mục 1 của chương trình Toán 11 tập 1 Kết nối tri thức tập trung vào việc giới thiệu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng, mở đầu cho chương trình Giải tích. Việc hiểu rõ khái niệm giới hạn sẽ giúp học sinh tiếp cận các khái niệm phức tạp hơn như đạo hàm và tích phân một cách dễ dàng hơn.
Mục 1 bao gồm các nội dung chính sau:
Để giải tốt các bài tập trong Mục 1, học sinh cần nắm vững các kiến thức sau:
Nội dung bài tập: Tính các giới hạn sau: a) lim (x→2) (x^2 - 4) / (x - 2); b) lim (x→3) (x^3 - 27) / (x - 3).
Lời giải:
a) lim (x→2) (x^2 - 4) / (x - 2) = lim (x→2) (x - 2)(x + 2) / (x - 2) = lim (x→2) (x + 2) = 4.
b) lim (x→3) (x^3 - 27) / (x - 3) = lim (x→3) (x - 3)(x^2 + 3x + 9) / (x - 3) = lim (x→3) (x^2 + 3x + 9) = 3^2 + 3*3 + 9 = 27.
Nội dung bài tập: Tính các giới hạn sau: a) lim (x→∞) (2x + 1) / (x - 1); b) lim (x→-∞) (x^2 + 2x - 1) / (x + 3).
Lời giải:
a) lim (x→∞) (2x + 1) / (x - 1) = lim (x→∞) (2 + 1/x) / (1 - 1/x) = 2/1 = 2.
b) lim (x→-∞) (x^2 + 2x - 1) / (x + 3) = lim (x→-∞) (x + 2 - 7/(x+3)) = -∞.
Nội dung bài tập: Cho hàm số f(x) = (x^2 - 1) / (x - 1). Tính lim (x→1) f(x).
Lời giải:
lim (x→1) f(x) = lim (x→1) (x^2 - 1) / (x - 1) = lim (x→1) (x - 1)(x + 1) / (x - 1) = lim (x→1) (x + 1) = 2.
Khi giải bài tập về giới hạn, cần chú ý các điểm sau:
Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trên đây, các em học sinh sẽ tự tin hơn khi giải các bài tập về giới hạn trong chương trình Toán 11 tập 1 Kết nối tri thức. Chúc các em học tập tốt!