Logo Header
  1. Môn Toán
  2. Bài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 6.7 trang 9 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải mới nhất.

Nếu một khoản tiền gốc P được gửi ngân hàng với lãi suất hằng năm r (r được biểu thị dưới dạng số thập phân)

Đề bài

Bài 6.7 trang 9

Nếu một khoản tiền gốc P được gửi ngân hàng với lãi suất hằng năm r (r được biểu thị dưới dạng số thập phân), được tính lãi n lần trong một năm, thì tổng số tiền A nhận được (cả vốn lẫn lãi) sau N kì gửi cho bởi công thức sau:

\(A = P{\left( {1 + \frac{r}{n}} \right)^N}.\)

Hỏi nếu bác An gửi tiết kiệm số tiền 120 triệu đồng theo kì hạn 6 tháng với lãi suất không đổi là 5% một năm, thì số tiền thu được (cả vốn lẫn lãi) của bác An sau 2 năm là bao nhiêu?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức 1

Áp dụng công thức và bấm máy tính.

Lời giải chi tiết

Vì bác An gửi tiết kiệm kì hạn 6 tháng nên được tính lãi 2 lần trong 1 năm và sau 2 năm là được 4 kì.

Số tiền thu được (cả vốn lẫn lãi) của bác An sau 2 năm là \(120.{\left( {1 + \frac{{5\% }}{2}} \right)^4} = 132,4575469\) (triệu đồng)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng môn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức: Giải chi tiết và hướng dẫn

Bài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 6.7 yêu cầu học sinh tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x2 + 3x + 1) / (x + 1)
  • d) y = sin(2x) + cos(x)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (x2 + 3x + 1) / (x + 1)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2 = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2 = (x2 + 2x + 2) / (x + 1)2

d) y = sin(2x) + cos(x)

Áp dụng công thức đạo hàm của hàm lượng giác, ta có:

y' = 2cos(2x) - sin(x)

Hướng dẫn giải bài tập tương tự

Để giải các bài tập tương tự, học sinh cần nắm vững các công thức đạo hàm cơ bản và các quy tắc đạo hàm như đạo hàm của tổng, hiệu, tích, thương, hàm hợp và hàm lượng giác. Ngoài ra, cần chú ý đến việc biến đổi biểu thức đại số để đưa về dạng đơn giản nhất trước khi tính đạo hàm.

Ví dụ minh họa

Hãy tính đạo hàm của hàm số y = x4 + 2x3 - x + 1.

Lời giải:

y' = 4x3 + 6x2 - 1

Luyện tập thêm

Để củng cố kiến thức, học sinh có thể tự giải thêm các bài tập sau:

  • Bài 6.8 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức
  • Bài 6.9 trang 10 SGK Toán 11 tập 2 - Kết nối tri thức

Kết luận

Bài 6.7 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Việc nắm vững các công thức và quy tắc đạo hàm là điều cần thiết để giải quyết bài tập này một cách hiệu quả. Hy vọng với lời giải chi tiết và hướng dẫn trên, học sinh có thể tự tin giải bài tập và đạt kết quả tốt trong môn Toán.

Công thức đạo hàm cơ bảnVí dụ
(xn)' = nxn-1(x2)' = 2x
(sin x)' = cos x(sin x)' = cos x
(cos x)' = -sin x(cos x)' = -sin x

Tài liệu, đề thi và đáp án Toán 11