Bài 6.9 trang 14 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Tính:
Đề bài
Tính:
a) \({\log _2}{2^{ - 13}};\)
b) \(\ln {e^{\sqrt 2 }};\)
c) \({\log _8}16 - {\log _8}2;\)
d) \({\log _2}6.{\log _6}8.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng công thức \({\log _a}{a^\alpha } = \alpha ;{\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N;{\log _a}M = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}.\)
Lời giải chi tiết
a) \({\log _2}{2^{ - 13}} = - 13\)
b) \(\ln {e^{\sqrt 2 }} = \sqrt 2 \)
c) \({\log _8}16 - {\log _8}2 = {\log _8}\frac{{16}}{2} = {\log _8}8 = 1\)
d) \({\log _2}6.{\log _6}8 = {\log _2}8 = {\log _2}{2^3} = 3.\)
Bài 6.9 trang 14 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu và các thông tin đã cho. Trong bài 6.9, đề bài thường cung cấp một hàm số mô tả mối quan hệ giữa các đại lượng và yêu cầu tính đạo hàm của hàm số đó tại một điểm cụ thể, hoặc tìm giá trị của biến số để đạo hàm đạt giá trị cực đại hoặc cực tiểu.
Giả sử đề bài yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x + 1 tại điểm x = 0.
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh có thể thực hành thêm các bài tập sau:
Bài 6.9 trang 14 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và công thức về đạo hàm, cùng với việc luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và áp dụng kiến thức này vào các lĩnh vực khác.