Bài 9.4 trang 86 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là 19,6 m/s
Đề bài
Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là 19,6 m/s thì độ cao h của nó (tính bằng mét) sau t giây được cho bởi công thức \(h = 19,6t - 4,9{t^2}.\) Tìm vận tốc của vật khi nó chạm đất.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)
Lời giải chi tiết
Với \({x_0}\) bất kì, ta có:
\(f'\left( {{t_0}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{19,6t - 4,9{t^2} - 19,6{t_0} + 4,9t_0^2}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \frac{{ - 4,9\left( {{t^2} - t_0^2} \right) + 19,6\left( {t - {t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( { - 4,9t - 4,9{t_0} + 19,6} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( { - 4,9t - 4,9{t_0} + 19,6} \right) = - 9,8{t_0} + 19,6\)
Vậy hàm số \(h = 19,6t - 4,9{t^2}\) có đạo hàm là hàm số \(h' = - 9,8{t_0} + 19,6\)
Độ cao của vật khi nó chạm đất thỏa mãn \(19,6t - 4,9{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 4\end{array} \right.\)
Khi t = 4, vận tốc của vật khi nó chạm đất là \( - 9,8.4 + 19,6 = - 19,6\) (m/s)
Vậy vận tốc của vật khi nó chạm đất là -19,6 m/s.
Bài 9.4 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.
Bài tập yêu cầu học sinh xét một tình huống thực tế, ví dụ như một vật thể chuyển động với vận tốc thay đổi theo thời gian. Dựa vào thông tin về vận tốc, học sinh cần tính toán các đại lượng liên quan như quãng đường đi được, gia tốc, và thời điểm vật thể đạt vận tốc cực đại hoặc cực tiểu.
Đề bài: Một vật thể chuyển động với vận tốc v(t) = 3t2 - 6t + 2 (m/s). Tính gia tốc của vật thể tại thời điểm t = 2 giây và quãng đường vật thể đi được trong khoảng thời gian từ t = 0 đến t = 3 giây.
Giải:
Vậy, gia tốc của vật thể tại thời điểm t = 2 giây là 6 m/s2 và quãng đường vật thể đi được trong khoảng thời gian từ t = 0 đến t = 3 giây là 6 mét.
Bài tập này giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Kiến thức này có ứng dụng rộng rãi trong nhiều lĩnh vực như vật lý, kinh tế, kỹ thuật, và khoa học tự nhiên.
Học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về bài tập 9.4 trang 86 SGK Toán 11 tập 2 - Kết nối tri thức:
Giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, học sinh sẽ nắm vững kiến thức và tự tin giải quyết các bài tập tương tự trong tương lai.