Bài 7.45 thuộc chương trình Toán 11 tập 2, Kết nối tri thức, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này đòi hỏi học sinh phải nắm vững kiến thức về các công thức đạo hàm cơ bản và cách áp dụng chúng vào giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 7.45 trang 65 SGK Toán 11 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trên mặt đất phẳng, người ta dựng một cây cột AB có chiều dài bằng (10;{rm{m}})
Đề bài
Trên mặt đất phẳng, người ta dựng một cây cột AB có chiều dài bằng \(10\;{\rm{m}}\) và tạo với mặt đất góc \({80^0}\). Tại một thời điểm dưới ánh sáng mặt trời, bóng BC của cây cột trên mặt đất dài \(12\;{\rm{m}}\) vào tạo với cây cột một góc bằng \({120^0}\) (tức là \(\widehat {ABC} = {120^0}\)). Tính góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Định lý cosin: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
Lời giải chi tiết
Góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên là \(\widehat {ACH}\)
Xét tam giác ABC có
\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC} = {10^2} + {12^2} - 2.10.12.\cos {120^0} = 364\\ \Rightarrow AC = 2\sqrt {91} \left( m \right)\end{array}\)
Gọi H là hình chiếu của A trên mặt đất
Xét tam giác ABH vuông tại H có
\(AH = 10.\sin {80^0}\)
Xét tam giác ACH vuông tại H có
\(\sin \widehat {ACH} = \frac{{AH}}{{AC}} = \frac{{10\sin {{80}^0}}}{{2\sqrt {91} }} \Rightarrow \widehat {ACH} \approx {31^0}\)
Vậy góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên khoảng 310.
Bài 7.45 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức liên quan.
Bài tập yêu cầu học sinh thực hiện các thao tác sau:
Để giải bài tập này, chúng ta sẽ thực hiện các bước sau:
Giả sử hàm số được cho là y = x3 - 3x2 + 2. Chúng ta sẽ thực hiện các bước trên để giải bài tập.
Bước 1: Tập xác định. Hàm số xác định trên R.
Bước 2: Đạo hàm. y' = 3x2 - 6x.
Bước 3: Điểm cực trị. Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2. Vậy hàm số có hai điểm cực trị là x = 0 và x = 2.
Bước 4: Sự biến thiên.
Bước 5: Đồ thị. Dựa vào các thông tin trên, ta có thể vẽ đồ thị của hàm số.
Đạo hàm là một công cụ mạnh mẽ trong việc giải các bài toán liên quan đến hàm số. Nó giúp chúng ta xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị của hàm số. Việc nắm vững kiến thức về đạo hàm là rất quan trọng để giải quyết các bài toán trong chương trình Toán 11.
Bài 7.45 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải bài tập này.