Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11 tập 2 Kết nối tri thức. Mục 4 trang 23, 24 tập trung vào các kiến thức quan trọng về đạo hàm, giúp bạn nắm vững lý thuyết và rèn luyện kỹ năng giải bài tập.
Chúng tôi cam kết mang đến cho bạn trải nghiệm học tập tốt nhất với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giải bài tập khoa học.
Cho đồ thị của hàm số (y = {log _2}x) và y = 2 như Hình 6.8.
Video hướng dẫn giải
Cho đồ thị của hàm số \(y = {\log _2}x\) và y = 2 như Hình 6.8. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 và từ đó suy ra tập nghiệm của bất phương trình \({\log _2}x > 2.\)
Phương pháp giải:
Quan sát đồ thị
Lời giải chi tiết:
Khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 là \(\left( {4; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình \({\log _2}x > 2\) là \(\left( {4; + \infty } \right)\)
Video hướng dẫn giải
Giải các bất phương trình sau:
a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right);\)
b) \(2\log \left( {2x + 1} \right) > 3.\)
Phương pháp giải:
Xét bất phương trình dạng \({\log _a}x > b\)
+) a > 1, nghiệm của bất phương trình là \(x > {a^b}\)
+) 0 < a < 1, nghiệm của bất phương trình là \(0 < x < {a^b}\)
Lời giải chi tiết:
a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\) (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow - 1 < x < 2\))
\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)
Mà – 1 < x < 2 nên x + 1 > 0
\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)
KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)
b) \(2\log \left( {2x + 1} \right) > 3\) (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))
\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10} - 1}}{2}\end{array}\)
KHĐK ta có \(x > \frac{{10\sqrt {10} - 1}}{2}\)
Video hướng dẫn giải
Áp suất khí quyển p (tính bằng kilopascal, viết tắt là kPa) ở độ cao h (so với mực nước biển, tính bằng km) được tính theo công thức sau:
\(\ln \left( {\frac{p}{{100}}} \right) = - \frac{h}{7}.\)
(Theo britannica.com)
a) Tính áp suất khí quyển ở độ cao 4 km.
b) Ở độ cao trên 10 km thì áp suất khí quyển sẽ như thế nào?
Phương pháp giải:
Sử dụng công thức \(\ln \left( {\frac{p}{{100}}} \right) = - \frac{h}{7}.\)
Lời giải chi tiết:
a) Ở độ cao 4km ta có: \(\ln \left( {\frac{p}{{100}}} \right) = - \frac{4}{7} \Leftrightarrow \frac{p}{{100}} = {e^{\frac{{ - 4}}{7}}} \Leftrightarrow p = 56,4718122\)
Vậy áp suất khí quyển ở độ cao 4 km là 56,4718122 kPa.
b) Ở độ cao trên 10km ta có:
\(h > 10 \Leftrightarrow \ln \left( {\frac{p}{{100}}} \right) < - \frac{{10}}{7} \Leftrightarrow \frac{p}{{100}} < {e^{\frac{{ - 10}}{7}}} \Leftrightarrow p < 23,96510364\)
Vậy ở độ cao trên 10 km thì áp suất khí quyển bé hơn 29,96510364 kPa.
Mục 4 của SGK Toán 11 tập 2 Kết nối tri thức tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Đây là một phần quan trọng trong chương trình học, giúp học sinh hiểu rõ hơn về tính chất của hàm số và cách sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu, và điểm uốn. Việc nắm vững kiến thức này là nền tảng để giải quyết các bài toán phức tạp hơn trong các chương sau.
Hướng dẫn: Sử dụng quy tắc tính đạo hàm của tổng và lũy thừa.
f'(x) = 3x2 - 4x + 5
Hướng dẫn:
Hướng dẫn:
Việc giải mục 4 trang 23, 24 SGK Toán 11 tập 2 Kết nối tri thức đòi hỏi sự nắm vững kiến thức về đạo hàm và khả năng áp dụng các quy tắc tính đạo hàm để giải quyết các bài toán cụ thể. Hy vọng với hướng dẫn chi tiết và các bài tập minh họa trên, bạn sẽ tự tin hơn trong việc học tập và đạt kết quả tốt trong môn Toán.
Hàm số | Đạo hàm |
---|---|
y = xn | y' = nxn-1 |
y = sinx | y' = cosx |
y = cosx | y' = -sinx |
Bảng tổng hợp đạo hàm cơ bản |