Bài 6.33 trang 25 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững phương pháp giải và tự tin làm bài tập.
Hàm số nào sau đây đồng biến trên tập xác định của nó?
Đề bài
Hàm số nào sau đây đồng biến trên tập xác định của nó?
A. \(y = {\log _{0,5}}x\).
B. \(y = {{\rm{e}}^{ - x}}\).
C. \(y = {\left( {\frac{1}{3}} \right)^x}\).
D. \(y = \ln x\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào đồ thị của hàm mũ và hàm lôgarit
Lời giải chi tiết
Đáp án D.
Bài 6.33 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số tại một điểm, đạo hàm của các hàm số cơ bản, và các quy tắc tính đạo hàm.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu. Thông thường, bài tập này sẽ yêu cầu tính đạo hàm của một hàm số tại một điểm cụ thể, hoặc tìm điều kiện để hàm số có đạo hàm tại một điểm. Ngoài ra, đề bài có thể yêu cầu sử dụng đạo hàm để giải quyết các bài toán thực tế, chẳng hạn như tính vận tốc, gia tốc, hoặc tốc độ thay đổi của một đại lượng nào đó.
Để giải bài tập 6.33 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức, học sinh có thể áp dụng các phương pháp sau:
Giả sử đề bài yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x + 1 tại điểm x = 1. Để giải bài tập này, ta thực hiện các bước sau:
Vậy, đạo hàm của hàm số f(x) = x2 + 2x + 1 tại điểm x = 1 là 4.
Khi giải bài tập 6.33 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức, học sinh cần lưu ý các điểm sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về đạo hàm, học sinh có thể tham khảo các bài tập tương tự sau:
Bài 6.33 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và công thức về đạo hàm, áp dụng các phương pháp giải bài tập một cách chính xác, và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán 11.
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ hiểu rõ hơn về Bài 6.33 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức và có thể tự tin giải quyết các bài tập tương tự.