Logo Header
  1. Môn Toán
  2. Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 6.35 trang 25 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững phương pháp giải và tự tin làm bài tập.

Cho (0 < a ne 1). Tính giá trị của biểu thức (B = {log _a}left( {frac{{{a^2} cdot sqrt[3]{a} cdot sqrt[5]{{{a^4}}}}}{{sqrt[4]{a}}}} right) + {a^{2{{log }_a}frac{{sqrt {105} }}{{30}}}}).

Đề bài

Cho \(0 < a \ne 1\). Tính giá trị của biểu thức \(B = {\log _a}\left( {\frac{{{a^2} \cdot \sqrt[3]{a} \cdot \sqrt[5]{{{a^4}}}}}{{\sqrt[4]{a}}}} \right) + {a^{2{{\log }_a}\frac{{\sqrt {105} }}{{30}}}}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức 1

Sử dụng công thức lũy thừa và lôgarit

Lời giải chi tiết

\(B = {\log _a}\left( {\frac{{{a^2} \cdot \sqrt[3]{a} \cdot \sqrt[5]{{{a^4}}}}}{{\sqrt[4]{a}}}} \right) + {a^{2{{\log }_a}\frac{{\sqrt {105} }}{{30}}}}\)

\( = {\log _a}\frac{{{a^2}.{a^{\frac{1}{3}}}.{a^{\frac{4}{5}}}}}{{{a^{\frac{1}{4}}}}} + {a^{{{\log }_a}{{\left( {\frac{{\sqrt {105} }}{{30}}} \right)}^2}}}\)

\( = {\log _a}\frac{{{a^{\frac{{47}}{{15}}}}}}{{{a^{\frac{1}{4}}}}} + {a^{{{\log }_a}\frac{7}{{60}}}} = {\log _a}{a^{\frac{{173}}{{60}}}} + {\left( {\frac{7}{60}} \right)^{{{\log }_a}a}}\)

\( = \frac{{173}}{{60}} + \frac{7}{60} = 3\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức: Giải chi tiết và hướng dẫn

Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Phân tích đề bài

Trước khi đi vào giải bài tập, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các thông tin đã cho. Bài 6.35 thường yêu cầu học sinh tính đạo hàm của một hàm số, tìm cực trị của hàm số, hoặc giải một phương trình liên quan đến đạo hàm.

Lời giải chi tiết

Để giải bài 6.35, chúng ta sẽ thực hiện các bước sau:

  1. Bước 1: Xác định hàm số: Xác định rõ hàm số cần xét.
  2. Bước 2: Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tính đạo hàm cấp một của hàm số.
  3. Bước 3: Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  4. Bước 4: Xác định loại cực trị: Sử dụng dấu của đạo hàm cấp hai để xác định loại cực trị (cực đại hoặc cực tiểu).
  5. Bước 5: Kết luận: Kết luận về giá trị cực đại, cực tiểu của hàm số.

Ví dụ, giả sử bài tập yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2.

  • Bước 1: Hàm số f(x) = x3 - 3x2 + 2
  • Bước 2: f'(x) = 3x2 - 6x
  • Bước 3: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Bước 4: f''(x) = 6x - 6. f''(0) = -6 < 0 => x = 0 là điểm cực đại. f''(2) = 6 > 0 => x = 2 là điểm cực tiểu.
  • Bước 5: Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, bạn cần lưu ý một số điểm sau:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Kiểm tra kỹ các bước tính toán để tránh sai sót.
  • Sử dụng đạo hàm cấp hai để xác định chính xác loại cực trị.
  • Áp dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tìm cực trị của hàm số: Giúp tìm ra giá trị lớn nhất và nhỏ nhất của hàm số.
  • Nghiên cứu sự biến thiên của hàm số: Giúp xác định khoảng tăng, khoảng giảm của hàm số.
  • Giải các bài toán tối ưu hóa: Giúp tìm ra giải pháp tối ưu cho các bài toán thực tế.
  • Tính vận tốc và gia tốc: Trong vật lý, đạo hàm được sử dụng để tính vận tốc và gia tốc của một vật thể.

Bài tập tương tự

Để củng cố kiến thức về đạo hàm, bạn có thể luyện tập thêm các bài tập tương tự trong SGK Toán 11 tập 2 - Kết nối tri thức và các tài liệu tham khảo khác.

Hy vọng với lời giải chi tiết và hướng dẫn trên, bạn đã hiểu rõ cách giải Bài 6.35 trang 25 SGK Toán 11 tập 2 - Kết nối tri thức. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11