Bài 15 trang 106 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức, tập trung vào việc ôn tập chương 4: Hàm số lượng giác và ứng dụng của hàm số lượng giác. Bài tập này giúp học sinh củng cố kiến thức về các loại hàm số lượng giác, cách vẽ đồ thị và ứng dụng của chúng trong giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho từng bài tập trong Bài 15, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hình lập phương (ABCD.A'B'C'D') có (AC' = sqrt 3 ). Khoảng cách giữa hai đường thẳng (AB') và (BC') bằng
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có \(AC' = \sqrt 3 \). Khoảng cách giữa hai đường thẳng \(AB'\) và \(BC'\) bằng
A. \(\frac{1}{3}\).
B. \(\frac{{\sqrt 3 }}{3}\).
C. \(\frac{{\sqrt 3 }}{2}\).
D. \(\frac{1}{2}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa đường thẳng này đến mặt phẳng song song chứa đường thẳng kia
Lời giải chi tiết
Gọi AC giao BD tại O
Ta có \(AC \bot BD,BD \bot AA' \Rightarrow BD \bot \left( {ACC'A'} \right);BD \subset \left( {BDC'} \right) \Rightarrow \left( {ACC'A'} \right) \bot \left( {BDC'} \right)\)
Mà \(\left( {ACC'A'} \right) \cap \left( {BDC'} \right) = OC'\)
Trong (ACCA’) kẻ \(AE \bot OC'\)
Do đó \(AE \bot \left( {BDC'} \right)\)
Ta có AB’ // DC’ nên \(d\left( {AB',BC'} \right) = d\left( {AB',\left( {BDC'} \right)} \right) = d\left( {A,\left( {BDC'} \right)} \right) = AE\)
Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {2A{B^2}} = AB\sqrt 2 \)
Xét tam giác ACC’ vuông tại C có
\(\begin{array}{l}A{C^2} + C{{C'}^2} = A{{C'}^2}\\ \Leftrightarrow {\left( {AB\sqrt 2 } \right)^2} + A{B^2} = 3\\ \Leftrightarrow 3A{B^2} = 3\\ \Leftrightarrow AB = 1\\ \Leftrightarrow AC = \sqrt 2 \end{array}\)
Xét tam giác OCC’ vuông tại C có \(C'O = \sqrt {C{{C'}^2} + O{C^2}} = \sqrt {{1^2} + {{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2}} = \frac{{\sqrt 6 }}{2}\)
Dễ dàng chứng minh
\( \Rightarrow \frac{{AE}}{{CC'}} = \frac{{AO}}{{C'O}} \Rightarrow AE = \frac{{AO.CC'}}{{C'O}} = \frac{{\frac{{\sqrt 2 }}{2}.1}}{{\frac{{\sqrt 6 }}{2}}} = \frac{{\sqrt 3 }}{3}\)
Đáp án B
Bài 15 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh ôn tập và củng cố kiến thức về hàm số lượng giác. Dưới đây là giải chi tiết từng phần của bài tập này:
Nội dung: Giải các phương trình lượng giác sau:
Giải:
Nội dung: Tìm tập nghiệm của các bất phương trình lượng giác sau:
Giải:
Nội dung: Giải các phương trình sau:
Giải:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh có thể tự tin giải Bài 15 trang 106 SGK Toán 11 tập 2 - Kết nối tri thức. Chúc các bạn học tốt!