Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Chúng tôi giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán trong sách giáo khoa.
Mục 3 trang 50 SGK Toán 11 tập 1 - Kết nối tri thức là một phần quan trọng trong chương trình học. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách rõ ràng.
Cho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})
Video hướng dẫn giải
Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d
Để tính tổng của n số hạng đầu
\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Hãy lần lượt thực hiện các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng \({S_n}\) theo số hạng đầu \({u_n}\) và công sai d
b) Viết \({S_n}\) theo thứ tự ngược lại: \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1}\) và sử dụng kết quả ở phần a) để biểu diễn mỗi số hạng trong tổng này theo \({u_1}\) và d
c) Cộng từng vế hai đẳng thức nhận được ở a), b) để tính \({S_n}\)theo \({u_1}\) và d
Phương pháp giải:
Để biểu diễn mỗi số hạng trong tổng \({S_n}\), ta dựa vào công thức tính số hạng tổng quát: \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Sau đó, ta cộng các số hạng trong dãy số ta được tổng các số hạng \({S_n}\)
Lời giải chi tiết:
a) \({u_2} = {u_1} + d\)
\({u_3} = {u_1} + 2d\)
…
\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)
\({u_n} = {u_1} + \left( {n - 1} \right)d\)
\({S_n} = {u_1} + {u_1} + 2d + \ldots + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)
b) \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1} + d + {u_1}\)
c) \(2{S_n} = \left( {{u_1} + {u_1} + d + \ldots + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1}} \right)\).
\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
Video hướng dẫn giải
Anh Nam được nhận vào làm việc ở một công ty về công nghệ với mức lương khởi điểm là 100 triệu đồng một năm. Công ty sẽ tăng thêm lương cho anh Nam mỗi năm là 20 triệu đồng. Tính tổng số tiền lương mà anh Nam nhận được sau 10 năm làm việc cho công ty đó.
Phương pháp giải:
Cấp số cộng là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Dựa vào định nghĩa cấp số cộng, ta áp dụng công thức tổng cấp số cộng: \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right]\)
Lời giải chi tiết:
Số tiền lương anh Nam nhận được sau 10 lập thành cấp số cộng với:
Số hạng đầu \({u_1} = 100\) và công sai \(d = 20\)
Tổng lương anh Nam nhận được sau 10 năm là:
\({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{10}}{2}\left[ {2.100 + \left( {10 - 1} \right).20} \right] = 1900\)(triệu đồng)
Mục 3 trang 50 SGK Toán 11 tập 1 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này, học sinh cần nắm vững các khái niệm, định lý và công thức liên quan. Bài viết này sẽ đi sâu vào từng bài tập, cung cấp lời giải chi tiết và giải thích rõ ràng các bước thực hiện.
Bài tập 1 yêu cầu… (Nội dung giải bài tập 1 chi tiết, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng). Ví dụ:
Bài tập 2 yêu cầu… (Nội dung giải bài tập 2 chi tiết, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng). Ví dụ:
Bài tập 3 yêu cầu… (Nội dung giải bài tập 3 chi tiết, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng). Ví dụ:
STT | Yếu tố | Giá trị |
---|---|---|
1 | a | … |
2 | b | … |
Khi giải các bài tập trong mục 3 trang 50 SGK Toán 11 tập 1 - Kết nối tri thức, bạn cần lưu ý những điều sau:
Kiến thức trong mục 3 trang 50 SGK Toán 11 tập 1 - Kết nối tri thức có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau, bao gồm:
Hy vọng rằng bài viết này đã cung cấp cho bạn những thông tin hữu ích và giúp bạn giải quyết các bài tập trong mục 3 trang 50 SGK Toán 11 tập 1 - Kết nối tri thức một cách hiệu quả. Chúc bạn học tập tốt!