Bài 5.31 trang 124 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán liên quan đến quan hệ song song, vuông góc.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{1}{x},;x ne 0}\{1;,;x = 0}end{array}} right.;;)gián đoạn tại (x = 0) b) (gleft( x right) = left{ {begin{array}{*{20}{c}}{1 + x;,;x < 1}\{2 - x;,x ge 1}end{array}} right.;;)gián đoạn tại (x = 1)
Đề bài
Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho
a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{x},\;x \ne 0}\\{1\;,\;x = 0}\end{array}} \right.\;\;\)gián đoạn tại \(x = 0\)
b) \(g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + x\;,\;x < 1}\\{2 - x\;,x \ge 1}\end{array}} \right.\;\;\)gián đoạn tại \(x = 1\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dùng định nghĩa liên tục của hàm số để giải thích
Lời giải chi tiết
a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{1}{x} = + \infty \)
\(f\left( 0 \right) = 1\)
Vì \(f\left( 0 \right) \ne \mathop {\lim }\limits_{x \to 0} f\left( x \right)\) suy ra hàm số gián đoạn tại \(x = 0\)
b) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x} \right) = 2\)
\(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {2 - x} \right) = 1\)
\(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right)\)
Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\)
Vậy hàm số gián đoạn tại \(x = 1\)
Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về đường thẳng và mặt phẳng trong không gian. Để giải bài tập này, học sinh cần nắm vững các khái niệm cơ bản như:
Nội dung bài tập:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M là trung điểm của CD. Biết SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SM và mặt phẳng (ABCD).
Lời giải:
Để tính góc giữa đường thẳng SM và mặt phẳng (ABCD), ta thực hiện các bước sau:
Kết luận: Góc giữa đường thẳng SM và mặt phẳng (ABCD) là khoảng 63.43°.
Lưu ý:
Trong quá trình giải bài tập, học sinh cần chú ý các bước sau:
Bài tập tương tự:
Để rèn luyện thêm kỹ năng giải toán, học sinh có thể tham khảo các bài tập tương tự sau:
Tài liệu tham khảo:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, học sinh sẽ hiểu rõ hơn về Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức và có thể tự tin giải các bài tập tương tự. Chúc các em học tốt!