Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của hàm số, một trong những chủ đề quan trọng nhất trong chương trình Toán 11 Kết nối tri thức.
Bài học này sẽ cung cấp cho bạn kiến thức cơ bản về giới hạn, các tính chất của giới hạn và cách áp dụng để giải quyết các bài toán thực tế.
1. Giới hạn hữu hạn của hàm số tại một điểm
1. Giới hạn hữu hạn của hàm số tại một điểm
Giả sử (a;b) là một khoảng chứa điểm \({x_0}\)và hàm số \(y = f(x)\)xác định trên khoảng (a;b), có thể trừ điểm \({x_0}\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \({x_n} \in \left( {a;b} \right)\),\({x_n} \ne {x_0}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\)hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).
*Quy tắc tính giới hạn của hàm số tại một điểm
a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\)và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\)thì
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)
b, Nếu \(f(x) \ge 0\)với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\)và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).
2. Giới hạn một bên
Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói số L là giới hạn bên phải của \(f(x)\)khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).
Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói số L là giới hạn bên trái của khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).
3. Giới hạn hữu hạn của hàm số tại vô cực
Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).
Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( { - \infty ;b} \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} < b\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).
* Nhận xét:
Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
Với c là hằng số, \(\mathop {\lim }\limits_{x \to + \infty } c = c\), \(\mathop {\lim }\limits_{x \to - \infty } c = c\).
Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to + \infty } (\frac{1}{{{x^k}}}) = 0,\mathop {\lim }\limits_{x \to - \infty } (\frac{1}{{{x^k}}}) = 0\).
4. Giới hạn vô cực của hàm số tại một điểm
a, Giới hạn vô cực
- Giả sử (a;b) là một khoảng chứa \({x_0}\)và hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(f(x)\)có giới hạn là \( + \infty \)khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = + \infty \).
Ta nói hàm số \(f(x)\)có giới hạn \( - \infty \)khi \(x \to {x_0}\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = - \infty \), nếu \(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f(x)} \right] = + \infty \).
- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên phải nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = + \infty \).
Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = + \infty \).
Các giới hạn một bên\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = - \infty \), \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = - \infty \) được định nghĩa tương tự.
b, Một số quy tắc tính giới hạn vô cực
*Giới hạn của tích\(\mathop {\lim }\limits_{x \to {x_0}} f(x).g(x)\)
*Giới hạn của thương \(\frac{{f(x)}}{{g(x)}}\)
Giới hạn của hàm số là một khái niệm nền tảng trong giải tích, đóng vai trò quan trọng trong việc nghiên cứu sự biến đổi của hàm số và tính liên tục của nó. Trong chương trình Toán 11 Kết nối tri thức, học sinh sẽ được làm quen với khái niệm này thông qua các bài học về giới hạn hữu hạn, giới hạn vô cực và giới hạn một bên.
Giới hạn của hàm số f(x) khi x tiến tới a, ký hiệu là limx→a f(x), là giá trị mà f(x) tiến gần tới khi x tiến gần a nhưng không bằng a. Nói cách khác, khi x càng gần a thì f(x) càng gần một giá trị xác định nào đó.
Việc nắm vững các tính chất của giới hạn là rất quan trọng để giải quyết các bài toán liên quan. Một số tính chất cơ bản bao gồm:
Trong quá trình học tập, bạn sẽ gặp một số dạng giới hạn thường gặp, ví dụ:
Khái niệm giới hạn có nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:
Ví dụ 1: Tính limx→2 (x2 + 3x - 1)
Giải: Áp dụng tính chất của giới hạn, ta có:
limx→2 (x2 + 3x - 1) = (limx→2 x2) + (limx→2 3x) - (limx→2 1) = 22 + 3*2 - 1 = 4 + 6 - 1 = 9
Ví dụ 2: Tính limx→0 (sin x / x)
Giải: Đây là một giới hạn lượng giác đặc biệt, có giá trị là 1.
Hy vọng bài học này sẽ giúp bạn hiểu rõ hơn về Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức. Chúc bạn học tập tốt!