Logo Header
  1. Môn Toán
  2. Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức

Lý thuyết Giới hạn của hàm số - Nền tảng Toán học 11

Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của hàm số, một trong những chủ đề quan trọng nhất trong chương trình Toán 11 Kết nối tri thức.

Bài học này sẽ cung cấp cho bạn kiến thức cơ bản về giới hạn, các tính chất của giới hạn và cách áp dụng để giải quyết các bài toán thực tế.

1. Giới hạn hữu hạn của hàm số tại một điểm

1. Giới hạn hữu hạn của hàm số tại một điểm

Giả sử (a;b) là một khoảng chứa điểm \({x_0}\)và hàm số \(y = f(x)\)xác định trên khoảng (a;b), có thể trừ điểm \({x_0}\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \({x_n} \in \left( {a;b} \right)\),\({x_n} \ne {x_0}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\)hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

*Quy tắc tính giới hạn của hàm số tại một điểm

a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\)và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\)thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\)với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\)và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).

2. Giới hạn một bên

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói số L là giới hạn bên phải của \(f(x)\)khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói số L là giới hạn bên trái của khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

3. Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( { - \infty ;b} \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì \({x_n} < b\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).

* Nhận xét:

Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

Với c là hằng số, \(\mathop {\lim }\limits_{x \to + \infty } c = c\), \(\mathop {\lim }\limits_{x \to - \infty } c = c\).

Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to + \infty } (\frac{1}{{{x^k}}}) = 0,\mathop {\lim }\limits_{x \to - \infty } (\frac{1}{{{x^k}}}) = 0\).

4. Giới hạn vô cực của hàm số tại một điểm

a, Giới hạn vô cực

- Giả sử (a;b) là một khoảng chứa \({x_0}\)và hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(f(x)\)có giới hạn là \( + \infty \)khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì, \(\left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = + \infty \).

Ta nói hàm số \(f(x)\)có giới hạn \( - \infty \)khi \(x \to {x_0}\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = - \infty \), nếu \(\mathop {\lim }\limits_{x \to {x_0}} \left[ { - f(x)} \right] = + \infty \).

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên phải nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = + \infty \).

Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói hàm số \(f(x)\)có giới hạn \( + \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\)bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = + \infty \).

Các giới hạn một bên\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = - \infty \), \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = - \infty \) được định nghĩa tương tự.

b, Một số quy tắc tính giới hạn vô cực

*Giới hạn của tích\(\mathop {\lim }\limits_{x \to {x_0}} f(x).g(x)\)

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức 1

*Giới hạn của thương \(\frac{{f(x)}}{{g(x)}}\)

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức 2

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức 3

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức

Giới hạn của hàm số là một khái niệm nền tảng trong giải tích, đóng vai trò quan trọng trong việc nghiên cứu sự biến đổi của hàm số và tính liên tục của nó. Trong chương trình Toán 11 Kết nối tri thức, học sinh sẽ được làm quen với khái niệm này thông qua các bài học về giới hạn hữu hạn, giới hạn vô cực và giới hạn một bên.

1. Khái niệm Giới hạn của hàm số

Giới hạn của hàm số f(x) khi x tiến tới a, ký hiệu là limx→a f(x), là giá trị mà f(x) tiến gần tới khi x tiến gần a nhưng không bằng a. Nói cách khác, khi x càng gần a thì f(x) càng gần một giá trị xác định nào đó.

2. Các loại Giới hạn

  • Giới hạn hữu hạn: Khi x tiến tới a, f(x) tiến tới một số thực L.
  • Giới hạn vô cực: Khi x tiến tới a, f(x) tiến tới vô cực (+∞) hoặc âm vô cực (-∞).
  • Giới hạn một bên: Xét giới hạn của f(x) khi x tiến tới a từ bên trái (x < a) và từ bên phải (x > a).

3. Tính chất của Giới hạn

Việc nắm vững các tính chất của giới hạn là rất quan trọng để giải quyết các bài toán liên quan. Một số tính chất cơ bản bao gồm:

  • limx→a [f(x) + g(x)] = limx→a f(x) + limx→a g(x)
  • limx→a [f(x) - g(x)] = limx→a f(x) - limx→a g(x)
  • limx→a [f(x) * g(x)] = limx→a f(x) * limx→a g(x)
  • limx→a [f(x) / g(x)] = (limx→a f(x)) / (limx→a g(x)) (với limx→a g(x) ≠ 0)

4. Các dạng Giới hạn thường gặp

Trong quá trình học tập, bạn sẽ gặp một số dạng giới hạn thường gặp, ví dụ:

  • Giới hạn của đa thức
  • Giới hạn của phân thức hữu tỉ
  • Giới hạn của hàm lượng giác

5. Ứng dụng của Giới hạn

Khái niệm giới hạn có nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:

  • Tính đạo hàm của hàm số
  • Tính tích phân của hàm số
  • Nghiên cứu sự liên tục của hàm số
  • Giải quyết các bài toán vật lý, kinh tế

6. Bài tập ví dụ minh họa

Ví dụ 1: Tính limx→2 (x2 + 3x - 1)

Giải: Áp dụng tính chất của giới hạn, ta có:

limx→2 (x2 + 3x - 1) = (limx→2 x2) + (limx→2 3x) - (limx→2 1) = 22 + 3*2 - 1 = 4 + 6 - 1 = 9

Ví dụ 2: Tính limx→0 (sin x / x)

Giải: Đây là một giới hạn lượng giác đặc biệt, có giá trị là 1.

7. Lời khuyên khi học Lý thuyết Giới hạn

  • Nắm vững định nghĩa và các tính chất của giới hạn.
  • Luyện tập giải nhiều bài tập khác nhau để làm quen với các dạng giới hạn thường gặp.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm toán học để kiểm tra kết quả.
  • Tìm hiểu các ứng dụng thực tế của giới hạn để hiểu rõ hơn về tầm quan trọng của nó.

Hy vọng bài học này sẽ giúp bạn hiểu rõ hơn về Lý thuyết Giới hạn của hàm số - SGK Toán 11 Kết nối tri thức. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11