Bài 9.27 trang 98 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Bên cạnh đó, chúng tôi còn cung cấp nhiều bài tập tương tự để học sinh luyện tập và củng cố kiến thức.
Cho hàm số (f(x) = sqrt {3x + 1} ). Đặt (g(x) = f(1) + 4left( {{x^2} - 1} right)f'(1)). Tính (g(2)).
Đề bài
Cho hàm số \(f(x) = \sqrt {3x + 1} \). Đặt \(g(x) = f(1) + 4\left( {{x^2} - 1} \right)f'(1)\). Tính \(g(2)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng công thức \({\left( {\sqrt u } \right)^,} = \frac{{u'}}{{2\sqrt u }}\)
Lời giải chi tiết
Ta có \(f'(x) = \frac{3}{{2\sqrt {3x + 1} }}\)
Do đó \(f\left( 1 \right) = 2,f'\left( 1 \right) = \frac{3}{4}\)
Vậy \(g(2) = f(1) + 4\left( {{2^2} - 1} \right)f'(1) = 2 + 12.\frac{3}{4} = 11\)
Bài 9.27 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải. Trong bài 9.27, đề bài thường yêu cầu tính đạo hàm của một hàm số tại một điểm cụ thể, hoặc tìm điều kiện để hàm số có đạo hàm tại một điểm. Ngoài ra, đề bài có thể yêu cầu sử dụng đạo hàm để giải quyết các bài toán thực tế, chẳng hạn như tính vận tốc, gia tốc, hoặc tốc độ thay đổi của một đại lượng nào đó.
Ví dụ: Cho hàm số f(x) = x2 + 2x + 1. Tính f'(2).
Giải:
Đạo hàm có rất nhiều ứng dụng trong thực tế, đặc biệt trong các lĩnh vực khoa học, kỹ thuật, và kinh tế. Ví dụ, đạo hàm được sử dụng để tính vận tốc và gia tốc của một vật thể chuyển động, để tìm cực trị của một hàm số, và để phân tích sự thay đổi của một đại lượng theo thời gian. Việc hiểu rõ ứng dụng của đạo hàm giúp học sinh thấy được tính thực tiễn của môn Toán và tăng hứng thú học tập.
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh có thể luyện tập thêm các bài tập tương tự trong SGK Toán 11 tập 2 - Kết nối tri thức, hoặc tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín như giaitoan.edu.vn. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin giải quyết các bài toán khó hơn.
Bài 9.27 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và công thức về đạo hàm, và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.