Logo Header
  1. Môn Toán
  2. Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức

Bài 9.31 trang 98 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Đồ thị của hàm số (y = frac{a}{x}) (a là hằng số dương)

Đề bài

Đồ thị của hàm số \(y = \frac{a}{x}\) (a là hằng số dương) là một đường hypebol. Chứng minh rằng tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtBài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức 1

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\)

Lời giải chi tiết

Ta có \(y' = \frac{{ - a}}{{{x^2}}}\)

Phương trình tiếp tuyến của hypebol tại điểm có hoành độ \({x_0}\) là

\(y - \frac{a}{{{x_0}}} = \frac{{ - a}}{{x_0^2}}\left( {x - {x_0}} \right)\) hay \(y = \frac{{ - a}}{{x_0^2}}x + \frac{{2a}}{{{x_0}}}\)

Gọi phương trình tiếp tuyến cắt hai trục tọa độ lần lượt tại A, B

\( \Rightarrow A\left( {0;\frac{{2a}}{{{x_0}}}} \right),B\left( {2{x_0};0} \right)\)

Do đó diện tích tam OAB bằng \(\frac{1}{2}.OA.OB = \frac{1}{2}\left| {\frac{{2a}}{{{x_0}}}.2{x_0}} \right| = 2a\)

Vậy tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức: Giải chi tiết và hướng dẫn

Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị và khảo sát hàm số.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải.

Lời giải chi tiết Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức

(Nội dung lời giải chi tiết bài tập Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức sẽ được trình bày tại đây. Lời giải sẽ bao gồm các bước giải cụ thể, giải thích rõ ràng, và sử dụng các công thức và định lý liên quan. Ví dụ:)

  1. Bước 1: Xác định hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm của hàm số.
  3. Bước 3: Tìm các điểm cực trị của hàm số.
  4. Bước 4: Khảo sát sự biến thiên của hàm số.
  5. Bước 5: Vẽ đồ thị của hàm số.

Ví dụ minh họa ứng dụng đạo hàm trong giải bài tập

Để giúp học sinh hiểu rõ hơn về cách ứng dụng đạo hàm trong giải bài tập, chúng ta sẽ xem xét một ví dụ minh họa:

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Giải:

  • Bước 1: Tính đạo hàm của hàm số: y' = 3x2 - 6x.
  • Bước 2: Tìm các điểm cực trị bằng cách giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  • Bước 3: Xác định loại điểm cực trị bằng cách xét dấu đạo hàm bậc hai: y'' = 6x - 6. Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2.

Luyện tập thêm các bài tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn khi giải các bài tập khó.

Tổng kết và lưu ý quan trọng

Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng ứng dụng đạo hàm để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, phân tích đề bài một cách cẩn thận, và lựa chọn phương pháp giải phù hợp. Ngoài ra, việc luyện tập thường xuyên và tham khảo các tài liệu tham khảo khác cũng rất quan trọng để giúp học sinh nắm vững kiến thức và tự tin hơn khi giải các bài tập khó.

Lưu ý:

  • Luôn kiểm tra lại kết quả sau khi giải bài tập.
  • Sử dụng máy tính bỏ túi để tính toán các giá trị phức tạp.
  • Tham khảo ý kiến của giáo viên hoặc bạn bè nếu gặp khó khăn trong quá trình giải bài tập.

Tài liệu, đề thi và đáp án Toán 11