Bài 8.2 trang 71 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài học này tập trung vào việc giải quyết các bài toán liên quan đến đạo hàm của hàm số.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Gieo hai con xúc xắc cân đối, đồng chất. Xét các biến cố sau:
Đề bài
Gieo hai con xúc xắc cân đối, đồng chất. Xét các biến cố sau:
E: “Số chấm xuất hiện trên hai con xúc xắc đều là số chẵn”;
F: “Số chấm xuất hiện trên hai con xúc xắc khác tính chẵn lẻ”;
K: “Tích số chấm xuất hiện trên hai con xúc xắc là số chẵn”.
Chứng minh rằng K là biến cố hợp của E và F.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Cho A và B là hai biến cố. Biến cố: “A hoặc B xảy ra” được gọi là biến cố hợp của A và B, kí hiệu là \(A \cup B.\)
Lời giải chi tiết
E = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6)}.
F = {(1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}.
Suy ra: E ∪ F = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6); (1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}.
Mặt khác:
K = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6); (1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}
Vậy K = E ∪ F (điều cần phải chứng minh).
Bài 8.2 trang 71 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Bài tập 8.2 yêu cầu học sinh tính đạo hàm của các hàm số được cho. Các hàm số này có thể ở nhiều dạng khác nhau, bao gồm hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit và hàm số hợp. Để giải quyết bài tập này, học sinh cần nắm vững các quy tắc tính đạo hàm cơ bản và các công thức đạo hàm của các hàm số đặc biệt.
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Ví dụ 2: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x).
Giải:
g'(x) = cos(x) - sin(x)
Để củng cố kiến thức về đạo hàm, học sinh có thể tự giải thêm các bài tập sau:
Bài 8.2 trang 71 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm. Bằng cách nắm vững các quy tắc tính đạo hàm cơ bản, luyện tập thường xuyên và tham khảo các tài liệu tham khảo, học sinh có thể giải quyết bài tập này một cách hiệu quả.