Bài 6.2 trang 9 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập. Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải mới nhất.
Thực hiện phép tính:
Đề bài
Thực hiện phép tính:
a) \({27^{\frac{2}{3}}} + {81^{ - 0,75}} - {25^{0,5}};\)
b) \({4^{2 - 3\sqrt 7 }}{.8^{2\sqrt 7 }}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng các công thức
\({a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}};a = \sqrt[n]{{{a^n}}};{\left( {{a^m}} \right)^n} = {a^{m.n}};{a^m}.{a^n} = {a^{m + n}}.\)
Lời giải chi tiết
a)
\(\begin{array}{l}{27^{\frac{2}{3}}} + {81^{ - 0,75}} - {25^{0,5}}\\ = \sqrt[3]{{{{27}^2}}} + {81^{ - \frac{3}{4}}} - {25^{\frac{1}{2}}}\\ = {\left( {\sqrt[3]{{{3^3}}}} \right)^2} + \frac{1}{{\sqrt[4]{{{{81}^3}}}}} - \sqrt {25} \\ = {3^2} + \frac{1}{{{{\left( {\sqrt[4]{{{3^4}}}} \right)}^3}}} - 5\\ = 9 + \frac{1}{{{3^3}}} - 5 = 9 + \frac{1}{{27}} - 5 = \frac{{109}}{{27}}\end{array}\)
b)
\(\begin{array}{l}{4^{2 - 3\sqrt 7 }}{.8^{2\sqrt 7 }} = {\left( {{2^2}} \right)^{2 - 3\sqrt 7 }}.{\left( {{2^3}} \right)^{2\sqrt 7 }}\\ = {2^{2.\left( {2 - 3\sqrt 7 } \right)}}{.2^{3.2\sqrt 7 }}\\ = {2^{4 - 6\sqrt 7 }}{.2^{6\sqrt 7 }} = {2^{4 - 6\sqrt 7 + 6\sqrt 7 }} = {2^4} = 16.\end{array}\)
Bài 6.2 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu và các thông tin đã cho. Trong bài 6.2, đề bài thường yêu cầu tính đạo hàm của một hàm số tại một điểm cụ thể, hoặc tìm đạo hàm của hàm số và sử dụng đạo hàm đó để giải quyết một vấn đề thực tế. Việc phân tích đề bài giúp học sinh xác định được phương pháp giải phù hợp và tránh sai sót trong quá trình giải.
Giả sử đề bài yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại điểm x = 1.
Khi giải bài tập về đạo hàm, học sinh cần chú ý các điểm sau:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh có thể luyện tập thêm các bài tập tương tự sau:
Bài 6.2 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và công thức về đạo hàm, cùng với việc luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.