Logo Header
  1. Môn Toán
  2. Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 1 trang 119 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 1 trang 119, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Trong mặt phẳng \(\left( P \right)\) cho hình bình hành \(ABCD\). Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với \(\left( P \right)\) lần lượt đi qua các điểm \(A,B,C,D\). Một mặt phẳng \(\left( Q \right)\) cắt bốn nửa đường thẳng nói trên tại \(A',B',C',D'\). Chứng minh rằng:

Đề bài

Trong mặt phẳng \(\left( P \right)\) cho hình bình hành \(ABCD\). Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với \(\left( P \right)\) lần lượt đi qua các điểm \(A,B,C,D\). Một mặt phẳng \(\left( Q \right)\) cắt bốn nửa đường thẳng nói trên tại \(A',B',C',D'\). Chứng minh rằng:

\(AA' + CC' = BB' + DD'\).

Phương pháp giải - Xem chi tiếtBài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

‒ Sử dụng định lí 3: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.

‒ Sử dụng tính chất đường trung bình của hình thang.

Lời giải chi tiết

Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

a) Ta có:

\(\left. \begin{array}{l}AA'\parallel DD'\\DD' \subset \left( {CC'D'D} \right)\end{array} \right\} \Rightarrow AA'\parallel \left( {CC'D'D} \right)\)

\(\left. \begin{array}{l}AB\parallel C{\rm{D}}\\C{\rm{D}} \subset \left( {CC'D'D} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {CC'D'D} \right)\)

\(\left. \begin{array}{l}AA'\parallel \left( {CC'D'D} \right)\\AB\parallel \left( {CC'D'D} \right)\\AA',AB \subset \left( {AA'B'B} \right)\end{array} \right\} \Rightarrow \left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\)

\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( P \right) \cap \left( {AA'B'B} \right) = A'B'\\\left( P \right) \cap \left( {CC'D'D} \right) = C'D'\end{array} \right\} \Rightarrow A'B'\parallel C'D'\left( 1 \right)\)

\(\left. \begin{array}{l}AD\parallel BC\\BC \subset \left( {BB'C'C} \right)\end{array} \right\} \Rightarrow AD\parallel \left( {BB'C'C} \right)\)

\(\left. \begin{array}{l}AA'\parallel BB'\\BB' \subset \left( {BB'C'C} \right)\end{array} \right\} \Rightarrow AA'\parallel \left( {BB'C'C} \right)\)

\(\left. \begin{array}{l}AA'\parallel \left( {BB'C'C} \right)\\AD\parallel \left( {BB'C'C} \right)\\AA',AD \subset \left( {AA'D'D} \right)\end{array} \right\} \Rightarrow \left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\)

\(\left. \begin{array}{l}\left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\\\left( P \right) \cap \left( {AA'D'D} \right) = A'D'\\\left( P \right) \cap \left( {BB'C'C} \right) = B'C'\end{array} \right\} \Rightarrow A'D'\parallel B'C'\left( 2 \right)\)

Từ (1) và (2) suy ra \(A'B'C'D'\) là hình bình hành.

Gọi \(O = AC \cap B{\rm{D}},O' = A'C' \cap B'{\rm{D}}'\)

\( \Rightarrow O\) là trung điểm của \(AC,B{\rm{D}}\), \(O'\) là trung điểm của \(A'C',B'{\rm{D}}'\).

\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( {AA'C'C} \right) \cap \left( {AA'B'B} \right) = AA'\\\left( {AA'C'C} \right) \cap \left( {CC'D'D} \right) = CC'\end{array} \right\} \Rightarrow AA'\parallel CC'\)

\( \Rightarrow AA'C'C\) là hình thang

\(O\) là trung điểm của \(AC\)

\(O'\) là trung điểm của \(A'C'\)

\( \Rightarrow OO'\) là đường trung bình của hình thang \(AA'C'C\)

\( \Rightarrow AA' + CC' = 2OO'\left( 3 \right)\)

\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( {BB'D'D} \right) \cap \left( {AA'B'B} \right) = BB'\\\left( {BB'D'D} \right) \cap \left( {CC'D'D} \right) = DD'\end{array} \right\} \Rightarrow BB'\parallel DD'\)

\( \Rightarrow BB'D'D\) là hình thang

\(O\) là trung điểm của \(B{\rm{D}}\)

\(O'\) là trung điểm của \(B'D'\)

\( \Rightarrow OO'\) là đường trung bình của hình thang \(BB'D'D\)

\( \Rightarrow BB' + DD' = 2OO'\left( 4 \right)\)

Từ (3) và (4) suy ra \(AA' + CC' = BB' + DD'\left( { = 2OO'} \right)\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bài tập này thường yêu cầu học sinh tính đạo hàm của hàm số, tìm cực trị, và khảo sát hàm số. Dưới đây là giải chi tiết bài tập này:

Nội dung bài tập

Bài 1 yêu cầu học sinh thực hiện các thao tác sau:

  • Tính đạo hàm của các hàm số đã cho.
  • Tìm các điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.

Giải chi tiết

Để giải bài tập này, chúng ta cần áp dụng các công thức đạo hàm cơ bản và các quy tắc tính đạo hàm. Ví dụ, đạo hàm của hàm số f(x) = xnf'(x) = nxn-1. Đạo hàm của hàm số sin(x)cos(x), và đạo hàm của hàm số cos(x)-sin(x).

Sau khi tính được đạo hàm, chúng ta cần tìm các điểm cực trị của hàm số. Các điểm cực trị là các điểm mà đạo hàm bằng 0 hoặc không xác định. Để xác định xem một điểm là cực đại hay cực tiểu, chúng ta có thể sử dụng dấu của đạo hàm cấp hai.

Cuối cùng, chúng ta cần khảo sát sự biến thiên của hàm số. Để khảo sát sự biến thiên, chúng ta cần xét dấu của đạo hàm trên các khoảng xác định của hàm số. Nếu đạo hàm dương trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu đạo hàm âm trên một khoảng, hàm số nghịch biến trên khoảng đó.

Ví dụ minh họa

Giả sử chúng ta có hàm số f(x) = x3 - 3x2 + 2x. Để giải bài tập này, chúng ta thực hiện các bước sau:

  1. Tính đạo hàm: f'(x) = 3x2 - 6x + 2
  2. Tìm các điểm cực trị: Giải phương trình f'(x) = 0, ta được x = (3 ± √3)/3.
  3. Xác định cực đại, cực tiểu: Tính đạo hàm cấp hai: f''(x) = 6x - 6. Tại x = (3 - √3)/3, f''(x) < 0, nên đây là điểm cực đại. Tại x = (3 + √3)/3, f''(x) > 0, nên đây là điểm cực tiểu.
  4. Khảo sát sự biến thiên: Xét dấu của f'(x) trên các khoảng xác định, ta có thể xác định được khoảng đồng biến và nghịch biến của hàm số.

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, cần lưu ý các điểm sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Áp dụng đúng các quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả tính toán.
  • Hiểu rõ ý nghĩa của đạo hàm trong việc khảo sát hàm số.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc của vật chuyển động.
  • Tìm cực trị của hàm số trong các bài toán tối ưu hóa.
  • Khảo sát sự biến thiên của hàm số.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, các em có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 tập 1 - Chân trời sáng tạo.
  • Sách bài tập Toán 11 tập 1 - Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo và tự tin giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11