Bài 1 trang 119 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 1 trang 119, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong mặt phẳng \(\left( P \right)\) cho hình bình hành \(ABCD\). Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với \(\left( P \right)\) lần lượt đi qua các điểm \(A,B,C,D\). Một mặt phẳng \(\left( Q \right)\) cắt bốn nửa đường thẳng nói trên tại \(A',B',C',D'\). Chứng minh rằng:
Đề bài
Trong mặt phẳng \(\left( P \right)\) cho hình bình hành \(ABCD\). Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với \(\left( P \right)\) lần lượt đi qua các điểm \(A,B,C,D\). Một mặt phẳng \(\left( Q \right)\) cắt bốn nửa đường thẳng nói trên tại \(A',B',C',D'\). Chứng minh rằng:
\(AA' + CC' = BB' + DD'\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng định lí 3: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.
‒ Sử dụng tính chất đường trung bình của hình thang.
Lời giải chi tiết
a) Ta có:
\(\left. \begin{array}{l}AA'\parallel DD'\\DD' \subset \left( {CC'D'D} \right)\end{array} \right\} \Rightarrow AA'\parallel \left( {CC'D'D} \right)\)
\(\left. \begin{array}{l}AB\parallel C{\rm{D}}\\C{\rm{D}} \subset \left( {CC'D'D} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {CC'D'D} \right)\)
\(\left. \begin{array}{l}AA'\parallel \left( {CC'D'D} \right)\\AB\parallel \left( {CC'D'D} \right)\\AA',AB \subset \left( {AA'B'B} \right)\end{array} \right\} \Rightarrow \left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\)
\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( P \right) \cap \left( {AA'B'B} \right) = A'B'\\\left( P \right) \cap \left( {CC'D'D} \right) = C'D'\end{array} \right\} \Rightarrow A'B'\parallel C'D'\left( 1 \right)\)
\(\left. \begin{array}{l}AD\parallel BC\\BC \subset \left( {BB'C'C} \right)\end{array} \right\} \Rightarrow AD\parallel \left( {BB'C'C} \right)\)
\(\left. \begin{array}{l}AA'\parallel BB'\\BB' \subset \left( {BB'C'C} \right)\end{array} \right\} \Rightarrow AA'\parallel \left( {BB'C'C} \right)\)
\(\left. \begin{array}{l}AA'\parallel \left( {BB'C'C} \right)\\AD\parallel \left( {BB'C'C} \right)\\AA',AD \subset \left( {AA'D'D} \right)\end{array} \right\} \Rightarrow \left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\)
\(\left. \begin{array}{l}\left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\\\left( P \right) \cap \left( {AA'D'D} \right) = A'D'\\\left( P \right) \cap \left( {BB'C'C} \right) = B'C'\end{array} \right\} \Rightarrow A'D'\parallel B'C'\left( 2 \right)\)
Từ (1) và (2) suy ra \(A'B'C'D'\) là hình bình hành.
Gọi \(O = AC \cap B{\rm{D}},O' = A'C' \cap B'{\rm{D}}'\)
\( \Rightarrow O\) là trung điểm của \(AC,B{\rm{D}}\), \(O'\) là trung điểm của \(A'C',B'{\rm{D}}'\).
\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( {AA'C'C} \right) \cap \left( {AA'B'B} \right) = AA'\\\left( {AA'C'C} \right) \cap \left( {CC'D'D} \right) = CC'\end{array} \right\} \Rightarrow AA'\parallel CC'\)
\( \Rightarrow AA'C'C\) là hình thang
\(O\) là trung điểm của \(AC\)
\(O'\) là trung điểm của \(A'C'\)
\( \Rightarrow OO'\) là đường trung bình của hình thang \(AA'C'C\)
\( \Rightarrow AA' + CC' = 2OO'\left( 3 \right)\)
\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( {BB'D'D} \right) \cap \left( {AA'B'B} \right) = BB'\\\left( {BB'D'D} \right) \cap \left( {CC'D'D} \right) = DD'\end{array} \right\} \Rightarrow BB'\parallel DD'\)
\( \Rightarrow BB'D'D\) là hình thang
\(O\) là trung điểm của \(B{\rm{D}}\)
\(O'\) là trung điểm của \(B'D'\)
\( \Rightarrow OO'\) là đường trung bình của hình thang \(BB'D'D\)
\( \Rightarrow BB' + DD' = 2OO'\left( 4 \right)\)
Từ (3) và (4) suy ra \(AA' + CC' = BB' + DD'\left( { = 2OO'} \right)\).
Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bài tập này thường yêu cầu học sinh tính đạo hàm của hàm số, tìm cực trị, và khảo sát hàm số. Dưới đây là giải chi tiết bài tập này:
Bài 1 yêu cầu học sinh thực hiện các thao tác sau:
Để giải bài tập này, chúng ta cần áp dụng các công thức đạo hàm cơ bản và các quy tắc tính đạo hàm. Ví dụ, đạo hàm của hàm số f(x) = xn là f'(x) = nxn-1. Đạo hàm của hàm số sin(x) là cos(x), và đạo hàm của hàm số cos(x) là -sin(x).
Sau khi tính được đạo hàm, chúng ta cần tìm các điểm cực trị của hàm số. Các điểm cực trị là các điểm mà đạo hàm bằng 0 hoặc không xác định. Để xác định xem một điểm là cực đại hay cực tiểu, chúng ta có thể sử dụng dấu của đạo hàm cấp hai.
Cuối cùng, chúng ta cần khảo sát sự biến thiên của hàm số. Để khảo sát sự biến thiên, chúng ta cần xét dấu của đạo hàm trên các khoảng xác định của hàm số. Nếu đạo hàm dương trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu đạo hàm âm trên một khoảng, hàm số nghịch biến trên khoảng đó.
Giả sử chúng ta có hàm số f(x) = x3 - 3x2 + 2x. Để giải bài tập này, chúng ta thực hiện các bước sau:
Khi giải bài tập về đạo hàm, cần lưu ý các điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để học tập và ôn luyện kiến thức về đạo hàm, các em có thể tham khảo các tài liệu sau:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 1 trang 119 SGK Toán 11 tập 1 - Chân trời sáng tạo và tự tin giải các bài tập tương tự.