Bài 10 trang 98 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc giải quyết các bài toán liên quan đến đạo hàm của hàm số. Bài tập này giúp học sinh củng cố kiến thức về đạo hàm, ứng dụng đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 10 trang 98 SGK Toán 11 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cường, Trọng và 6 bạn nữ xếp ngẫu nhiên thành một hàng ngang để chụp ảnh.
Đề bài
Cường, Trọng và 6 bạn nữ xếp ngẫu nhiên thành một hàng ngang để chụp ảnh. Tính xác suất của biển cố “Có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng”.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).
‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Lời giải chi tiết
Có \(8!\) cách sắp xếp 8 bạn đứng thành hàng ngang \( \Rightarrow n\left( \Omega \right) = 8!\)
Gọi \(A\) là biến cố: “Cường đứng ở đầu hàng”, \(B\) là biến cố “Trọng đứng ở đầu hàng”.
Vậy \(AB\) là biến cố “Cả Cường và Trọng đứng ở đầu hàng”, \(A \cup B\) là biến cố “Có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng”.
Xếp chỗ cho Cường đứng đầu hàng có 2 cách.
Xếp chỗ cho 7 bạn còn lại có \(7!\) cách.
\( \Rightarrow n\left( A \right) = 2.7! \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{2.7!}}{{8!}} = \frac{1}{4}\)
Xếp chỗ cho Trọng đứng đầu hàng có 2 cách.
Xếp chỗ cho 7 bạn còn lại có \(7!\) cách.
\( \Rightarrow n\left( B \right) = 2.7! \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{2.7!}}{{8!}} = \frac{1}{4}\)
Xếp chỗ cho Cường và Trọng đứng đầu hàng có 2 cách.
Xếp chỗ cho 6 bạn còn lại có \(6!\) cách.
\( \Rightarrow n\left( {AB} \right) = 2.6! \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{2.6!}}{{8!}} = \frac{1}{{28}}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{4} + \frac{1}{4} - \frac{1}{{28}} = \frac{{13}}{{28}}\)
Bài 10 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh rèn luyện kỹ năng áp dụng đạo hàm vào việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu học sinh tính đạo hàm của các hàm số cho trước. Các hàm số này có thể bao gồm các hàm số đơn giản như đa thức, hàm lượng giác, hàm mũ, hàm logarit, hoặc các hàm số phức tạp hơn được tạo thành từ các hàm số đơn giản thông qua các phép toán cộng, trừ, nhân, chia, hợp thành.
Để giải bài tập này, học sinh cần nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản, cũng như các quy tắc tính đạo hàm của hàm hợp, đạo hàm của tích, đạo hàm của thương. Cụ thể:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1
Giải:
f'(x) = (x3)' + (2x2)' - (5x)' + (1)'
f'(x) = 3x2 + 4x - 5 + 0
f'(x) = 3x2 + 4x - 5
Ví dụ 2: Tính đạo hàm của hàm số g(x) = sin(2x)
Giải:
g'(x) = (sin(2x))'
g'(x) = cos(2x) * (2x)'
g'(x) = 2cos(2x)
Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 10 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo và tự tin giải các bài tập tương tự. Hãy luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt trong môn Toán.