Logo Header
  1. Môn Toán
  2. Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 86 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình chóp tam giác đều (S.ABC) cạnh đáy bằng (2a) và chiều cao bằng (asqrt 2 ).

Đề bài

Cho hình chóp tam giác đều \(S.ABC\) cạnh đáy bằng \(2a\) và chiều cao bằng \(a\sqrt 2 \). Khoảng cách từ tâm \(O\) của đáy \(ABC\) đến một mặt bên là

A. \(\frac{{a\sqrt {14} }}{7}\).

B. \(\frac{{a\sqrt 2 }}{7}\).

C. \(\frac{{a\sqrt {14} }}{2}\).

D. \(\frac{{2a\sqrt {14} }}{7}\).

Phương pháp giải - Xem chi tiếtBài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

Cách tính khoảng cách từ một điểm đến một mặt phẳng: Tính khoảng cách từ điểm đó đến hình chiếu của nó lên mặt phẳng.

Lời giải chi tiết

Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo 2

Gọi \(I\) là trung điểm của \(BC\), kẻ \(OH \bot SI\left( {H \in SI} \right)\).

\(ABC\) là tam giác đều \( \Rightarrow AI \bot BC\)

\(SO \bot \left( {ABC} \right) \Rightarrow SO \bot BC\)

\( \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot OH\)

Mà \(OH \bot SI\)

\( \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH\)

\(ABC\) là tam giác đều \( \Rightarrow AI = \frac{{AB\sqrt 3 }}{2} = a\sqrt 3 \Rightarrow OI = \frac{1}{3}AI = \frac{{a\sqrt 3 }}{3}\)

\(SO = a\sqrt 2 \Rightarrow OH = \frac{{SO.OI}}{{\sqrt {S{O^2} + O{I^2}} }} = \frac{{a\sqrt {14} }}{7}\)

Chọn A.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 4 yêu cầu học sinh xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:

  • a) Tính đạo hàm f'(x).
  • b) Tìm các điểm cực trị của hàm số.
  • c) Xác định khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

a) Tính đạo hàm f'(x)

Để tính đạo hàm f'(x), ta sử dụng quy tắc đạo hàm của hàm số đa thức:

f'(x) = 3x2 - 6x

b) Tìm các điểm cực trị của hàm số

Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2.

Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của đạo hàm bậc hai f''(x):

f''(x) = 6x - 6

Tại x = 0, f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.

Tại x = 2, f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.

Giá trị của hàm số tại các điểm cực trị là:

  • f(0) = 2
  • f(2) = 23 - 3(22) + 2 = 8 - 12 + 2 = -2

Vậy, hàm số có điểm cực đại là (0, 2) và điểm cực tiểu là (2, -2).

c) Xác định khoảng đồng biến, nghịch biến của hàm số

Dựa vào dấu của đạo hàm f'(x), ta có thể xác định khoảng đồng biến và nghịch biến của hàm số:

  • f'(x) > 0 khi x < 0 hoặc x > 2, vậy hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞).
  • f'(x) < 0 khi 0 < x < 2, vậy hàm số nghịch biến trên khoảng (0, 2).

Kết luận

Thông qua việc giải Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo, học sinh đã nắm vững kiến thức về đạo hàm, điểm cực trị và khoảng đồng biến, nghịch biến của hàm số. Đây là những kiến thức cơ bản và quan trọng trong chương trình học Toán 11.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Trong vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Trong kinh tế: Tính chi phí biên, doanh thu biên.
  • Trong kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.

Việc hiểu và vận dụng đạo hàm một cách linh hoạt sẽ giúp học sinh giải quyết các bài toán thực tế một cách hiệu quả.

Luyện tập thêm

Để củng cố kiến thức về đạo hàm, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, có thể tham khảo các bài giảng trực tuyến và các video hướng dẫn giải bài tập trên giaitoan.edu.vn.

Tổng kết

Bài 4 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh hiểu sâu hơn về đạo hàm và ứng dụng của nó. Hy vọng với lời giải chi tiết và hướng dẫn trên, học sinh có thể tự tin giải bài tập này và các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11