Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 4 trang 18, 19 SGK Toán 11 tập 2 chương trình Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập một cách khoa học.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, tự tin giải quyết các bài toán Toán 11 và đạt kết quả cao trong học tập.
Khi chưa có máy tính, người ta thường tính các lôgarit dựa trên bảng giá trị các lôgarit thập phân đã được xây dựng sẵn.
Khi chưa có máy tính, người ta thường tính các lôgarit dựa trên bảng giá trị các lôgarit thập phân đã được xây dựng sẵn. Chẳng hạn, để tính \(x = {\log _2}15\), người ta viết \({2^x} = 15\) rồi lấy lôgarit thập phân hai vế, nhận được \(x\log 2 = \log 15\) hay \(x = \frac{{\log 15}}{{\log 2}}\).
Sử dụng cách làm này, tính \({\log _a}N\) theo \(\log a\) và \(\log N\) với \(a,N > 0,a \ne 1\).
Phương pháp giải:
Biến đổi rồi lấy lôgarit thập phân hai vế.
Lời giải chi tiết:
Đặt \(x = {\log _a}N \Leftrightarrow {a^x} = N \Leftrightarrow \log {a^x} = \log N \Leftrightarrow x\log a = \log N \Leftrightarrow x = \frac{{\log N}}{{\log a}}\)
Vậy \({\log _a}N = \frac{{\log N}}{{\log a}}\)
Tính giá trị các biểu thức sau:
a) \({\log _{\frac{1}{4}}}8\);
b) \({\log _4}5.{\log _5}6.{\log _6}8\).
Phương pháp giải:
Sử dụng công thức đổi cơ số.
Lời giải chi tiết:
a) \({\log _{\frac{1}{4}}}8 = {\log _{{2^{ - 2}}}}{2^3} = \frac{3}{{ - 2}}{\log _2}2 = - \frac{3}{2}\).
b) \({\log _4}5.{\log _5}6.{\log _6}8 = {\log _4}5.\frac{{{{\log }_4}6}}{{{{\log }_4}5}}.\frac{{{{\log }_4}8}}{{{{\log }_4}6}} = {\log _4}8 = {\log _{{2^2}}}{2^3} = \frac{3}{2}{\log _2}2 = \frac{3}{2}\).
Đặt \({\log _3}2 = a,{\log _3}7 = b\). Biểu thị \({\log _{12}}21\) theo \(a\) và \(b\).
Phương pháp giải:
Sử dụng công thức đổi cơ số, đưa về lôgarit cơ số 3.
Lời giải chi tiết:
Ta có: \({\log _{12}}21 = \frac{{{{\log }_3}21}}{{{{\log }_3}12}} = \frac{{{{\log }_3}\left( {7.3} \right)}}{{{{\log }_3}\left( {{2^2}.3} \right)}} = \frac{{{{\log }_3}7 + {{\log }_3}3}}{{{{\log }_3}{2^2} + {{\log }_3}3}} = \frac{{{{\log }_3}7 + 1}}{{2{{\log }_3}2 + 1}} = \frac{{b + 1}}{{2a + 1}}\)
Mục 4 của SGK Toán 11 tập 2 chương trình Chân trời sáng tạo tập trung vào các kiến thức về phép biến hình. Cụ thể, các em sẽ được làm quen với các khái niệm như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các phép biến hình này là nền tảng quan trọng để học tập các kiến thức hình học nâng cao hơn.
Bài tập mục 4 trang 18, 19 SGK Toán 11 tập 2 bao gồm các dạng bài tập khác nhau, yêu cầu học sinh vận dụng kiến thức về các phép biến hình để giải quyết các bài toán cụ thể. Dưới đây là phân tích chi tiết từng bài tập:
Bài tập này yêu cầu học sinh xác định ảnh của một điểm hoặc một hình qua phép tịnh tiến. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép tịnh tiến và cách xác định tọa độ của ảnh sau phép tịnh tiến.
Ví dụ: Cho điểm A(x0, y0) và vectơ t = (a, b). Ảnh của điểm A qua phép tịnh tiến theo vectơ t là điểm A'(x0 + a, y0 + b).
Bài tập này yêu cầu học sinh xác định ảnh của một điểm hoặc một hình qua phép quay. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép quay và cách xác định tọa độ của ảnh sau phép quay.
Ví dụ: Cho điểm A(x0, y0) và tâm quay O(0, 0), góc quay α. Tọa độ của ảnh A' của điểm A qua phép quay tâm O, góc α được tính theo công thức:
Bài tập này yêu cầu học sinh xác định ảnh của một điểm hoặc một hình qua phép đối xứng trục. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép đối xứng trục và cách xác định tọa độ của ảnh sau phép đối xứng trục.
Ví dụ: Cho điểm A(x0, y0) và trục đối xứng d: y = 0. Ảnh của điểm A qua phép đối xứng trục d là điểm A'(x0, -y0).
Bài tập này yêu cầu học sinh xác định ảnh của một điểm hoặc một hình qua phép đối xứng tâm. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép đối xứng tâm và cách xác định tọa độ của ảnh sau phép đối xứng tâm.
Ví dụ: Cho điểm A(x0, y0) và tâm đối xứng I(a, b). Ảnh của điểm A qua phép đối xứng tâm I là điểm A'(2a - x0, 2b - y0).
Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trên đây, các em học sinh sẽ tự tin hơn khi giải các bài tập về phép biến hình trong SGK Toán 11 tập 2 chương trình Chân trời sáng tạo. Chúc các em học tập tốt!